Forschung

Aktuelle Projekte

Resist -Methode zur Erzeugung und Beurteilung von schweißbedingten Rissen beim Widerstandspunktschweißen (IGF 22 654 BR)
Laufzeit: 01.09.2023 bis 31.08.2025

Zur Einhaltung der gestiegenen Anforderungen im Bereich des Insassenschutzes sowie der Umsetzung von Leichtbauzielen werden vermehrt höchst- und ultrahochfeste Stähle im Automobilbau verwendet. Um diese Stähle zu einer tragenden Struktur zu fügen, dominiert im Karosseriebau das Widerstandspunktschweißen. Obwohl eine generelle Schweißeignung der eingesetzten Stähle vorliegt, kann es infolge von fertigungsbedingten Störgrößen zu einer erhöhten Anfälligkeit gegenüber Unregelmäßigkeiten beim Widerstandspunktschweißen kommen. Diese Imperfektionen treten in Form von Rissen, Poren, Lunkern und Einschlüssen am Schweißpunkt auf. Für die sichere Auslegung von Schweißverbindungen wird im Rahmen des Projektes der Einfluss von Rissen auf die Verbindungseigenschaften untersucht. Aktuell sind hier neuartige hochfeste Mehrphasenstähle der Gen III für die Kaltumformung fokussiert, welche eine hohe Anfälligkeit zu schweißbedingten Rissen aufweisen. Diese Risse sind durch die sogenannte Flüssigmetallversprödung (engl.: Liquid Metal Embrittlement - LME) bedingt, welche durch die zum Korrosionsschutz aufgetragene Zinkbeschichtung provoziert wird.
Aktuell existieren eine Reihe von unterschiedlichen Untersuchungen zur Korrelation von LME-bedingten Rissen und den mechanischen Eigenschaften der Verbindung, jedoch liegen keine normativen Aussagen über den Einfluss von Risslängen und –lagen auf die Verbindungsfestigkeit vor.
Die Innovation des Forschungsvorhabens liegt in der Entwicklung einer einfachen und industrienahen Prüfmethodik, die zur Detektion und Klassifizierung der Rissanfälligkeit von Werkstoffen und Materialdickenkombinationen dient und die Auswirkung der Risse auf die mechanischen Verbindungseigenschaften beschreibt.
Die Ziele des Projektes sind zusammengefasst:

  • die Identifikation von Prozesseinflüssen zur Erzeugung von schweißbedingten Rissen
  • die Herstellung von Proben mit unterschiedlichen schweißbedingten Rissen und deren zerstörungsfreie Rissdetektion
  • die Analyse des Einflusses von definierten Rissen auf die Verbindungsfestigkeit der Fügeverbindung
  • die Ableitung einer industrienahen Methodik zum Prüfen der Rissanfälligkeit

Projekt im Forschungsportal ansehen

Aluminium-Schaum durch MIG-Schweißen additiv in Form gebracht (Aladdin) AiF/IGF 22 055 BR
Laufzeit: 01.12.2021 bis 31.10.2024

Ziel des Forschungsvorhabens ist die Herstellung von additiv generierten, dreidimensionalen Aluminiumschaumstrukturen mittels eines additiven MIG-Schweißprozesses (engl.: Wire Arc Additive Manufacturing, WAAM). Im Gegensatz zur konventionellen Herstellung von Aluminiumschäumen in Form vorrangig zweidimensionaler Sandwichplatten erlaubt die additive Verarbeitung ein wesentlich breiteres Spektrum an Geometrien. Potentielle Anwendungen sind hierbei:

  • Additives Schweißen auf Massiv- oder Schaumteilen
  • Verbindungsschweißen von Aluminiumschaumbauteilen
  • Verbindungsschweißen von massiven Aluminium- mit Aluminiumschaumteilen

Um Anwendungen des Leichtbauwerkstoffs Al-Schaum zu erweitern, sollen sowohl das additive Herstellen als auch das Verbindungsschweißen von Aluminiumschaum im Rahmen des Projekts untersucht werden.
In Versuchen wurde bereits bestätigt, dass mit Titandihydrid (TiH2) versetzte Schweißdrähte geeignet sind, um poröse, mehrschichtige Aluminiumschaumstrukturen mit einem MIG-Schweißprozess zu generieren. Aufbauend auf diese Ergebnisse sollen verschiedene, mit entsprechenden Treibmitteln versetzte Schweißdrahttypen bezüglich ihrer technologischen Eignung überprüft werden. Ziel ist es hierbei ideale Prozessparameter zu finden, mit denen ein hochporöses, homogenes Aluminiumschweißgut erzeugt werden kann, das ähnliche Eigenschaften wie Aluminiumschaum besitzt. Besonders mechanische und physikalisch-technologische Eigenschaften wie z.B. Dichtheit gegenüber Flüssigkeitseindringen sollen untersucht werden. Es werden Schäume basierend auf den Legierungen AlSiMg sowie AlSi12 mit Porengrößen < 1 mm angestrebt, da diese eine höhere thermische Stabilität versprechen als großporige Schäume.
Industriepartner können im Rahmen eines Projektausschusses involviert werden. Interessenten sind jederzeit herzlich zur Mitarbeit eingeladen.

Projekt im Forschungsportal ansehen

Produktivitätssteigerung beim additiven Lichtbogenschweißen dünnwandiger Strukturen aus hochlegierten korrosionsbeständigen Werkstoffen
Laufzeit: 01.05.2023 bis 31.10.2025

Ziel des Forschungsvorhabens ist die Entwicklung einer geeigneten aktiven Kühlstrategie zum additiven MSG-CMT-Schweißen mit hochlegierten korrosionsbeständigen Massivdrahtelektroden. Diese soll sowohl in den kritischen Temperaturbereichen wirken, in denen relevante Gitterumwandlungen und Sekundärphasenausscheidungen auftreten, als auch die hohen technologischen Ansprüche des additiven Fertigens, d. h. Eignung für mehrachsige Fertigungssystemen mit beweglichem Arbeitstisch und komplexe Bauteilstrukturen, berücksichtigen. Die wirtschaftlichen Vorteile des Kühlens sind eine signifikante Reduzierung der Nebenzeiten durch eine relativ geringe Investition sowie die mögliche Erhöhung von Abschmelzleistung bzw. Aufbaurate durch Einsatz von Mehrdraht-MSG-Schweißprozessen. Die technischen Vorzüge zeigen sich in einer verbesserten Makro- und Mikrostruktur, schnelleren Abkühlraten in den kritischen Temperaturgebieten sowie höheren mechanischen Eigenschaften und Korrosionsbeständigkeiten. Aufbauend auf dem Stand der Technik sind daher die Randbedingungen und Einflussfaktoren verschiedener aktiver Kühlmethoden gegenüberzustellen, eine geeignete Kühlstrategie abzuleiten und unter Beachtung der werkstofflichen Herausforderungen des hochlegierten korrosionsbeständigen Legierungstyps (Austenit, Duplex, Ni-Basis) zu untersuchen.

Projekt im Forschungsportal ansehen

Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle
Laufzeit: 01.09.2022 bis 31.08.2024

Eine Prüfung der wasserstoffunterstützten Kaltrissbildung (HACC) bei der Einführung neuer Schweißverfahrensvarianten oder Werkstoffe ist aktuell nur mit sehr aufwendigen Untersuchungen möglich. Die Bestimmung der H-Gehalte sowie der HACC erfolgt dabei in getrennten Versuchsaufbauten, welche unterschiedliche Bedingungen an die Schweißaufgabe stellen. Eine standardisierte Methode, die sowohl eine H-Bestimmung als auch die Prüfung der Eigenschaftsdegradation vereint, existiert derzeit nicht. Auch das Normenwerk deckt eine Prüfung der HACC-Beständigkeit für hochfeste Stähle nicht ab und bestehende Konzepte (Vorwärmung) sind nicht zielführend. Das Ziel des Forschungsvorhabens besteht in der Erarbeitung und Erprobung einer neuartigen Prüfmethode, die die Prüfung von H-Gehalt und HACC-Empfindlichkeit vereint und zudem auch beim Verarbeiter (KMU) anwendbar ist. Hierzu erfolgen vergleichende Untersuchungen an einem HACC sensiblen sowie unempfindlichen Stahl mit dem MSG- und dem UP-Schweißprozess. Resultat des Forschungsvorhaben ist eine innovative Prüfmethodik, die eine vereinfachte, universell und insbesondere für KMU geeignete werkstoff- und verfahrensoffene HACC-Prüfung ermöglicht.

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

Entwicklung einer Technologie zum generativen MSG-Schweißen von Geometrien auf Aluminium-Druckgussbauteile "MSGenerAl" AiF/IGF 21 541 BR
Laufzeit: 01.01.2021 bis 30.04.2024

Ziel des Forschungsantrags ist die Entwicklung einer Technologie zum generativen MSG-Schweißen (Additive Manufacturing) von Konturen auf Aluminium-Druckgussbauteilen. Der Prozess ist dabei so zu gestalten, dass die erforderlichen Bauteileigenschaften erreicht werden und der Prozess eine wirtschaftliche Alternative zu bestehenden Prozessvarianten für die skizzierten Beispielanwendungen darstellt. Die geplanten Werkstoffe, die dafür verwendeten Methoden und Anlagen entsprechen den typischen Ausstattungen in dem adressierten Industriebereich. Als Gusswerkstoffe werden aus dem System AlSi die naturharte Legierung AlSi9Mn sowie die aushärtbare AlSi10MnMg-Legierung genutzt. Die Untersuchungen liefern den Zusammenhang zwischen dem Schweißzusatzwerkstoff und den erzielbaren Werkstoffanforderungen in Anlehnung an die des Druckguss-Substrats. Werkstoffabhängig muss ggf. eine nachfolgende Wärmebehandlung erfolgen, wie sie für das DG-Bauteil üblich ist. Um eine unzulässige thermische Degradierung der Gusseigenschaften zu vermeiden, werden die zulässigen Grenzen für Prozesstemperatur und -dauer im Gussteil sowie im aufgeschweißten Bereich ermittelt. Ein wichtiges Teilziel ist die Realisierung einer Technologie für die Gussteilkonditionierung zu Beginn des Auftragprozesses zur Vorbereitung und gleichzeitigen Vermeidung von Poren und Bindefehlern bei den ersten geschweißten Lagen. Diese Konditionierung soll durch Blindschweißungen mit dem WIG-Lichtbogen erfolgen, um das Bauteil im Bereich der Auftragschweißungen vorzuwärmen, die Oxid-schicht aufzubrechen und den Guss entgasen zu lassen. Auf dieser vorbehandelten Bauteilzone werden dem generativen MSG-Schweißprozess ein ungehinderter Start ermöglicht und Unregelmäßigkeiten wie Poren oder Bindefehler vermieden. Abschließend wird die Anwendbarkeit der neu entwickelten Technologie an einem bauteilähnlichen Probekörper verifiziert. Hierbei sollen Fehlerquellen identifiziert und die Praxistauglichkeit bewertet werden.
Teilziele:

  • WIG-Gussteilkonditionierung zur Vorbereitung des Auftragprozesses und Vermeidung von Poren und Bindefehlern
  • Temperaturmanagement des Schweißprozesses zur Vermeidung unzulässiger Wärmebeeinflussung des Druckgusses
  • Schweißgut erfüllt Werkstoffanforderungen des Druckguss-Substrats auch nach Wärmebehandlung aushärtbarer Legierungen

Projekt im Forschungsportal ansehen

Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement (LME) an realitätsnahen Prinzipbauteilen (AiF-IGF 21 483 BG)
Laufzeit: 01.11.2020 bis 30.11.2023

Beim Widerstandspunktschweißen von verzinkten Stählen berichten zahlreiche Quellen von Risserscheinungen, die auf Liquid Metal Embrittlement (LME) zurückzuführen sind. Da als Folge von LME bedingten Rissen eine negative Beeinflussung der Schweißpunkt-Tragfähigkeit derzeit nicht in jedem Fall ausgeschlossen werden, kann liegen qualitativ hochwertige, rissfreie Punktschweißverbindungen im Interesse der gesamten metallverarbeitenden Industrie.
Die Zielsetzung des Forschungsvorhabens liegt in der Erforschung von LME an umgeformten, realitätsnahen Bauteilen. Dafür werden umfassende Widerstandspunktschweiß (WPS)-Versuche zunächst an Flachproben und dann an umgeformten Bauteilen durchgeführt und unter verschiedenen Bedingungen auf LME untersucht. Am IWF Magdeburg werden die eingesetzten Werkstoffe charakterisiert und die kritischen Bedingungen in Heißzug-Versuchen nachgestellt und isoliert untersucht. Die numerische Simulation (Fraunhofer IPK) wird als Brücke eingesetzt um "unsichtbare" kritische Bedingungen zu ermitteln und zwischen Gleeble- und WPS-Versuchen zu transferieren. Dabei sollen die vorherrschenden Mechanismen zur Bildung von LME an realitätsnahen Bauteilen verstanden und LME reproduzierbar hergestellt werden. Im nächsten Schritt werden Vermeidungsstrategien entwickelt und schlussendlich der Einfluss von verbleibenden LME Rissen auf die Verbindungsfestigkeit quantifiziert.

Projekt im Forschungsportal ansehen

Methodik zur Bewertung eines Widerstandspunktschweißprozesses auf Grundlage der Elektrodenbewegung (AiF/IGF Nr. 20.841 BR)
Laufzeit: 01.01.2020 bis 31.08.2023

Das Widerstandspunktschweißen (WPS) ist eines der dominierenden Schweißverfahren in der automobilen Massenproduktion. Wird exemplarisch ein modernes Fahrzeug betrachtet, so sind durchschnittlich 2000 - 5000 Schweißpunkte vorhanden, bei denen Bleche aus unterschiedlichen Güten, Beschichtungen und Dicken gefügt werden. Hieraus ergeben sich stets neue Herausforderungen an das Widerstandspunktschweißen, wie beispielsweise dem Fügen von asymmetrischen Mehrblechverbindungen aus unterschiedlichen Fahrzeugkomponenten. Im Vergleich zu Zweiblechverbindungen kann es bei Mehrblechverbindungen zu einer vertikalen Verschiebung der Schweißlinse kommen, die mit einer ungenügenden Anbindung des dünnen Ausbleches einhergeht. Um dieser Problematik entgegenzuwirken, kann der Prozess des Widerstandspunktschweißens direkt durch die gewählten Schweißparameter, d. h. Schweißstrom, Schweißzeit und Elektrodenkraft beeinflusst werden. Aus diesem Grunde ist es von großer Bedeutung diese Parameter gezielt auf die jeweiligen Werkstoffe und deren Beschichtungen abzustimmen, um somit eine Steigerung der Prozessstabilität zu erzielen. Im Allgemeinen erfolgt die Prozessparametrisierung mithilfe von Schweißbereichsdiagrammen, dessen Parameterfindung primär auf der Erfahrung des Anwenders basiert und mit einem hohen Versuchsumfang einhergeht. Aufgrund der steigenden Ansprüche an Wirtschaftlichkeit und Qualität wird eine effiziente Methode zur Bewertung und Optimierung der vorgenommenen Parameteranpassungen in Sinne der Industrie 4.0 benötigt.

Das Ziel des Projektes liegt in der Vernetzung der aufgezeichneten Prozessdaten mit der erzielten Schweißqualität. Zu diesem Zweck werden aus den aufgezeichneten Prozessgrößen signifikante Kennwerte abgeleitet, die eine systematische Optimierung und Beurteilung der Schweißparameter ermöglichen und somit den Versuchsumfang signifikant verringern. Insbesondere die Prozessgröße der "Elektrodenbewegung" wird verwendet, um den Widerstandsprozess zu interpretieren und zu bewerten. Infolgedessen soll eine effektive Prozessoptimierung entwickelt werden, die erhebliche Einsparungen in der Einrichtung von Prozessen sowie der serienbegleitenden Prüfung ermöglicht. Voraussetzung dazu ist das Verständnis zur Auswertung und Nutzung dieser bisher nicht betrachteten Prozessgröße der Elektrodenbewegung. Im Forschungsprojekt soll die Erprobung von Sensorsystemen, die Bereitstellung einer effektiven Methode zur Analyse von Prozessverläufen sowie die Bewertung von vorgenommenen Parameteranpassungen unabhängig von der genutzten Anlagentechnik ermöglicht werden. Abschließend soll ein Auswertewerkzeug bereitgestellt werden, mit der die Analyse und Bewertung der Prozessdaten erfolgen kann.

Projekt im Forschungsportal ansehen

Doppelpunkt-Widerstandsschweißen mit integrierter Prozessanalyse für den Schienenfahrzeug- und Busbau (DoWiPro) KK5069301FH0
Laufzeit: 01.12.2020 bis 28.02.2023

Ziel ist die Neuentwicklung einer Verfahrenserweiterung zum Widerstandspunktschweißen für Anwendungen großer Blechstrukturen z.B. im Schienenfahrzeugbau. Mit der Technologie des einseitigen Doppelpunktschweißen mit einer Kupfergegenlage werden dabei zwei Schweißpunkte gleichzeitig in einem Arbeitsgang erzeugt. Die Unterlage besteht aus zwei miteinander elektrisch verbundenen, im Abstand zueinander veränderlichen Elektroden. Zur Erreichung des Ziels werden vier Schwerpunkte bearbeitet: Erhöhung der Wirtschaftlichkeit, Erstellung eines neuartigen Anlagekonzeptes, Gewährleistung der Prozesssicherheit durch ein Inline-Prozessanalyse und Erzeugung eines Prozessmodells. Es wird eine Doppelpunkt-Widerstandsschweißanlage zum Schweißen von großen Blechstrukturen aufgebaut incl. der dazugehörigen elektromechanischen Auslegungen. Zur Prozessentwicklung erfolgt die Erprobung der gebauten Anlage und die Erforschung der Prozessdatenanalyse. Das Prozessmodell wird mittels FEM-Simulation abgeglichen und soll den Anlagenbau unterstützen.

Projekt im Forschungsportal ansehen

Kompetenzzentrum eMobility
Laufzeit: 01.06.2022 bis 31.12.2022

Im Rahmen des öffentlich geförderten Projektes "Kompetenzzentrum eMobility" liegt der Schwerpunkt einerseits im Aufbau eines Prüfzentrums in Form des "Center for Method Development" (CMD) in Barleben. Andererseits sollen energieeffiziente Prozesse beim Aufbau eines Forschungsfahrzeuges methodisch entwickelt und angewendet werden.
Für das Prüfzentrum CMD werden die Arbeitspakete der Auslegung, Konzeption, Planung und Betreuung der Prüfstände von den Teilprojekten übernommen. Zu den weiteren Aufgaben gehört unter anderem die Einarbeitung und Vorbereitung der Inbetriebnahme der Prüfstände. Dafür ist es notwendig einen Versuchsträger auszuwählen und die Beschaffungsprozesse vorzubereiten.
In Vorbereitung auf das Vorhaben "Nachhaltige Elektromobilität" sollen die Forscher*innen in den drei Schwerpunkten "Entwicklungs- und Simulationswerkzeuge", "Fertigungs- und Prüftechniken" sowie "Validierungs- und Prüfmethoden" die Konzepte weiter schärfen.

Projekt im Forschungsportal ansehen

Simulativ gestützte Charakterisierung eines momentenreduzierten Rotationsreibschweißprozesses, AiF-IGF 20.809B
Laufzeit: 01.10.2019 bis 30.06.2022

Das Reibschweißen findet aufgrund seiner prozessbedingten Vorteile wie einer hohen Prozessstabilität sowie der zuverlässigen Verbindungsqualität in vielen Industriebereichen Einsatz. Dabei besteht der Fügeprozess hinsichtlich der Prozessparametrierung seit 50 Jahren annähernd unverändert. D
Reibschweißen ist ein robustes industriell häufig angewandtes Verfahren zum Fügen rotationssymmetrischer Bauteile, z.B. Antriebswellen.
Das Reibmoment als Reaktionsgröße erreicht im Prozeeablauf sowohl beim Anreiben als auch in der Bremsphase lokale Maxima. Diese machen es nötig, dass Bauteile mittels ausreichend hoher Kräfte durch die Spannmittel vorgespannt werden. Die damit verbundene massive konstruktive und somit kostenintensive Ausführung der Spannmittel, einhergehend mit dem Verschleiß im Falle von Bauteilschlupf, reduziert die Verfahrenswirtschaftlichkeit. Darüber hinaus verringern sich die übertragbaren Vorspannkräfte auf das Bauteil mit steigender Drehzahl in Folge wirkender Zentrifugalkräfte und somit der Verfahrensanwendungsbereich. Weiterhin ist zum jetzigen Zeitpunkt die Reibschweißtechnologie für dünnwandige Rohrbauteile nicht einsetzbar, da die notwendigen Vorspannkräfte aufgrund der geringen Steifigkeit zu einem Beulen dieser führen.
Ziel des Forschungsprojektes ist es daher, die notwendigen Vorspannkräfte durch Momentenreduktion unter Beibehalt der verbindungsbildenden Qualitätskriterien zu reduzieren, wodurch sich der Technologieanwendungsbereich auf dünnwandige Rohrbauteile erweitert. Als innovativen Ansatz verfolgt das Vorhaben dabei die prädiktive, simulative Prozessvorentwicklung. Die bestehenden Prozessparametrierungsvorschriften werden als Ergebnis des Projektes derart erweitert, dass eine direkte Umsetzung für Maschinenhersteller als auch Anwender ermöglicht wird. Es ergibt sich somit neben der Wirtschaftlichkeitssteigerung in Folge niedrigeren Spannmittelverschleißes auch die Erweiterung des Anwendungsbereiches auf das Reibschweißen dünnwandiger Rohrbauteile, woraus sich im globalen Vergleich ein Wissens- und Technologievorsprung ableitet.

Projekt im Forschungsportal ansehen

Kompetenzzentrum eMobility
Laufzeit: 01.01.2019 bis 31.05.2022

Das im Januar 2019 gestartete Vorhaben "Kompetenzzentrum eMobility" greift die strukturbedingten Herausforderungen der Elektromobilität auf und entwickelt im Rahmen eines neu zu gründenden Kompetenzzentrums Lösungen in wichtigen Teilbereichen, welche die Kooperation zwischen KMU und universitärer Forschung und Lehre deutlich stärken. Das Wissen kann direkt in die betroffene Zulieferindustrie überführt werden und dort dazu beitragen, den Strukturwandel erfolgreich zu managen und neue wirtschaftliche Chancen zu nutzen.
Neben der primären Zielsetzung des Aufbaus und Transfers von Kern-Know-How steht vor allem die langfristige Verankerung gewonnener Erkenntnisse in beschäftigungswirksamen wirtschaftlichen Strukturen im Vordergrund.

Im Fokus wissenschaftlicher und struktureller Entwicklungen stehen zwei wesentliche Dimensionen elektromobiler Anwendungen. Zum einen die Umsetzung vollständig neuer Antriebskonzepte und die Erforschung der damit verbunden weitreichenden Auswirkungen auf die Fahrzeuginfrastruktur mit essentiellen Folgen für die Einsatzfähigkeit E-mobiler Anwendungen. Zum anderen werden Erkenntnisse grundlegend neuer Funktionsmechanismen für Maschinenbau-Lösungen als auch informationstechnische Aspekte des Fahrbetriebs gewonnen und Partnern aus der Wirtschaft verfügbar gemacht, welche im engen Zusammenhang mit neuen Fahrzeuginfrastrukturen stehen. Der radikale Umbruch im Fahrzeugbau der Zukunft bedingt eine ziel- und technologieorientierte Verzahnung unterschiedlicher Wissenschaftsdisziplinen in einem Kompetenzzentrum zur sowohl leistungsstarken als auch reaktionsschnellen Entwicklung von Komponenten und systemischen Lösungen mit explizitem Demonstrationscharakter.

Inhaltlich konzentriert sich das Kompetenzzentrum auf die beiden bereits etablierten Bereiche Elektrische Antriebe/ Antriebsstrang und Gesamtfahrzeug sowie den sehr zukunftsträchtigen neu geschaffenen Bereich Autonomes Fahren. Jeder dieser Bereiche verfolgt mehrere Ziele:

  • Schaffung wissenschaftlicher Grundlagen und technologischer Alleinstellungsmerkmale
  • Transfer in Produkte oder Dienstleistungen gemeinsam mit Partnerfirmen
  • Ausbildung und Qualifizierung von qualifiziertem Personal für Wissenschaft und Wirtschaft

Darüber hinaus ergibt sich durch den Technology-push-Ansatz im Bereich der Komponentenentwicklung eine Vielzahl alternativer Einsatzmöglichkeiten mit dem Ziel Wertschöpfung neu zu definieren und in der Region zu verankern. Im Fokus des Vorhabens steht somit die Erlangung und Umsetzung wissenschaftlicher Ergebnisse mit ausgeprägtem Bezug zur Innovationsstrategie des Landes Sachsen-Anhalt, hier schwerpunktmäßig das Themenfeld Mobilität und Logistik. Somit wird eine strukturelle Brückenwirkung zwischen Forschung und wirtschaftlicher Anwendung ermöglicht.

Projekt im Forschungsportal ansehen

Kompetenzzentrum eMobility - Forschungsbereich Antriebsstrang: Teilprojekt Stückzahlabhängige Fügetechnologien für Kupferleiter bei Leichtbau-Elektromaschinen
Laufzeit: 01.01.2019 bis 31.12.2021

Das Vorhaben Kompetenzzentrum eMobility greift strukturbedingte Herausforderungen der Elektromobilität auf und entwickelt im Rahmen eines neu zu gründenden Kompetenzzentrums Lösungen in wichtigen Teilbereichen, welche die Kooperation zwischen KMU und universitärer Forschung und Lehre deutlich stärken. Das Wissen kann direkt in die betroffene Zulieferindustrie überführt werden und dort dazu beitragen, den Strukturwandel erfolgreich zu managen und neue wirtschaftliche Chancen zu nutzen. Neben der primären Zielsetzung des Aufbaus und Transfers von Kern-Know-How steht vor allem die langfristige Verankerung gewonnener Erkenntnisse in beschäftigungswirksamen wirtschaftlichen Strukturen im Vordergrund.
Das Ziel des Teilprojektes ist die Herstellung und das Kleben von mäanderförmig vorgefertigten Phasen der Kupferleiter für Elektroantriebe mit Luftspaltwicklung, die möglichst flach unter geringen Fertigungstoleranzen auf den Eisenrückschluss appliziert werden. Abhängig von der Fertigungstechnologie der mäanderförmigen Kupferleiter und von bestehenden Betriebsanforderungen an die elektrische Maschine wie mechanische Festigkeit, Durchschlagfestigkeit, Alterungsbeständigkeit, wird ein geeignetes Befestigungsverfahren der Kupfermäander auf dem Stator des Elektromotors konzipiert. Dabei liegen elektrische Leiter im Vergleich zum konventionellen Motorenbau nicht als einzelne Kupferdrähte, sondern als konfektionierbare Phasen-Leiter mit maßgeschneidertem Querschnitt vor. Von besonderer Bedeutung ist die Gestaltung einer isolierenden, temperaturbeständigen und wärmeleitenden Klebeverbindung mit hoch produktiven Klebstoffsystemen.

Projekt im Forschungsportal ansehen

Kompetenzzentrum eMobility - Forschungsbereich Gesamtfahrzeug: Teilprojekt : Vergleich fügetechnischer Verfahren zur modularen Fertigung von E-Batterien
Laufzeit: 01.01.2019 bis 31.12.2021

Das Vorhaben Kompetenzzentrum eMobility greift die strukturbedingten Herausforderungen auf und entwickelt im Rahmen eines neu zu gründenden Kompetenzzentrums Lösungen in wichtigen Teilbereichen, welche die Kooperation zwischen KMU und universitärer Forschung und Lehre deutlich stärken. Das Wissen kann direkt in die betroffene Zulieferindustrie überführt werden und dort dazu beitragen, den Strukturwandel erfolgreich zu managen und neue wirtschaftliche Chancen zu nutzen. Neben der primären Zielsetzung des Aufbaus und Transfers von Kern-Know-How steht vor allem die langfristige Verankerung gewonnener Erkenntnisse in beschäftigungswirksamen wirtschaftlichen Strukturen im Vordergrund.

Das IAF verantwortet innerhalb des Vorhabens das Teilprojekt Gesamtfahrzeug. Im Focus der Forschung steht der Einsatzes neuartiger Antriebssysteme unter Realbedingungen. Als strategischer Forschungsansatz, getragen durch eine der Nachhaltigkeit verpflichteten Entwicklungsanspruch, steht die Langlebigkeit und damit Instandsetzungsfähigkeit elektromobiler Gesamtsysteme, hierbei speziell der Elektrospeichersysteme. Hierbei konzentrieren sich die Arbeiten auf die Entwicklung und Erprobung einer wartungsfreundlichen Energiespeichertechnologie in Modulbauweise, neue, einfache Systemarchitekturen für Fahrzeugsteuerungen und die systemische Gestaltung von Spezialanwendungen rund um die Batteriekonfektionierung.

Im Teilprojekt "Vergleich fügetechnischer Verfahren zur modularen Fertigung von E-Batterien" getragen vom IWF und IMK steht folgendes Thema im Fokus:

Derzeitige Batteriesysteme sind gekennzeichnet von monolithischer Bauweise und einer Orientierung auf eine größtenteils stoffliche Verwertung nach begrenzten Lebensdauern. Das zu entwickelnde System soll einen modularen Aufbau besitzen und sich mit geringem Aufwand warten bzw. teilerneuern lassen. So lässt sich im Falle eines Kapazitätsverlustes oder gar dem Ausfall einer Batteriezelle ein gezielter Austausch von Modulen erreichen. Im Rahmen dieses Teilprojektes wird ein konstruktiver, fertigungstechnischer und montageorientierter Abgleich fügetechnischer Verfahren zur Fertigung einer wartungsfreundlichen E-Antriebsbatterie in Modulbauweise für die Serienfertigung durchgeführt. Neben dem Abgleich werden des Weiteren die Entwicklung und Prüfung exemplarischer Aufbauvarianten von Batteriemodulen unter Beachtung langlebiger Einsatzszenarien und Dauerhaltbarkeit werthaltiger E-Komponenten durchgeführt. Das Ziel dieses Teilprojektes ist die Konzeption einer langlebigen und wartungsfreundlichen Fahrantriebbatterie in Modulbauweise unter der Beachtung einer zuverlässigen elektrischen Kontaktierung der Batteriezellen sowie einer crashsicheren Gehäusestruktur und eines aktiven Kühlkonzeptes.

Für den Demonstrations- und Transfercharakter des Gesamtvorhabens werden in Zusammenarbeit mit der sachsen-anhaltinischen Industrie Anwendungsszenarien in Technologieträger operationalisiert und konsequent weiterentwickelt und optimiert.
Die Arbeiten erfolgen innerhalb der institutsübergreifenden Forschergruppe für Elektromobilität Editha.

Leitung Kompetenzzentrum eMobility Forschungsbereich Gesamtfahrzeug: Dipl.-Ing. Gerd Wagenhaus

Projekt im Forschungsportal ansehen

Modellentwicklung zur Vorauslegung von reibgeschweißten Aluminium-Stahl Hybridverbindungen durch ganzheitliche Abbildung der Verbindungsbildung mittels FEM (AiF-IGF. 20 890)
Laufzeit: 01.12.2018 bis 30.11.2021

Das Reibschweißen ist ein etabliertes Fügeverfahren, welches in vielen Bereichen des Maschinenbaus
zur Herstellung von Hybridstrukturen aus Aluminium und Stahl genutzt wird. Entscheidend für die
Gebrauchstauglichkeit von Hybridverbindungen ist vor allem die werkstoffadäquate Ausbildung der
Verbindung. Aufgrund der Abhängigkeit der Schweißverbindung von der Ausprägung, Art und Kontinuität der intermetallischen Diffusionsschicht, des Gefüges und der stoffschlüssigen Anbindung, ist die Entwicklung einer reibgeschweißten Hybridstrukturen mit optimalen Eigenschaften häufig zeit-
und kostenintensiv. Gerade für kmU ist es daher nahezu unmöglich solche Hybridstrukturen wirtschaftlich zu entwickeln. Erklärtes Ziel des Projektes ist der Aufbau und die Erprobung einer Simulation für die Auslegung reibgeschweißten Hybridverbindungen aus Aluminium und Stahl.
Zu diesem Zweck werden entsprechende Reibschweißversuche durchgeführt, wobei die Prozess-parameter systematisch variiert werden. Diese Versuche liefern die Datenbasis für die experimentelle Analyse der Einflüsse auf die Tragfähigkeit der Struktur. Gleichzeitig dienen die Versuche als
Validierungsgrundlage für die Simulation des Schweißprozesses selbst. Mit Hilfe der Pozesssimulation
können die Auswirkungen der Prozessparameter auf die Prozessgrößen und somit auf die Werkstoff-
und den Struktureigenschaften abgeleitet werden. Ausgehend davon werden entsprechende
phänomenologische Modelle entwickelt, um die maßgeblichen Einflüsse abzubilden. Anschließend
werden diese Ergebnisse als Ausgangsbedingung bei der Simulation der Tragfähigkeit (virtueller Zugversuch) der Hybridverbindung verwendet. Insbesondere für kmU wird mithilfe der Simulation die
wirtschaftliche Möglichkeit geschaffen, die Verbindung prädiktiv in Abhängigkeit des gewählten Prozesses zu bewerten. Komplexe Reibschweißaufgaben lassen sich damit bereits im Vorfeld der
Versuchsdurchführung analysieren und entsprechend optimieren.

Projekt im Forschungsportal ansehen

System zum mechanisierten Metall-Schutzgas-Schweißen mit adaptiver Einbrand-Regelungs- und Überwachungs-Technologie (S-MAUT 4.0)
Laufzeit: 01.05.2019 bis 31.07.2021

Beim Lichtbogenschweißen von Blechstärken = 10 mm mittels MAG- oder UP-Verfahren sind nach dem Stand der Technik umfangreiche technologische Vorkehrungen zu treffen, um gerade bei großen Nahtlängen ein gleichmäßiges Durchschweißen der Wurzellage sicherzustellen. Das Ziel ist hierfür der Einsatz eines MSG-Hochleistungsprozesses in automatisierter Ausführung mit hoher Wirtschaftlichkeit. Dabei kommt es aber häufig zu Schweißfehlern, die durch aufwendige Nacharbeit beseitigt werden müssen. Daher werden derzeit viele Anwendungen noch manuell geschweißt, wobei der Schweißer den Prozess entsprechend regeln kann. Der Einsatz mechanisierter Verfahren zum Schweißen der Wurzellage ist nur durch den Einsatz aufwendiger Schmelzbadsicherungen auf der Unterseite der Nähte möglich, die jedoch immer zu Lasten der Fertigungskosten gehen.
Die automatisierte wirtschaftliche Herstellung von schweren Stahlbaukomponenten erfordert eine wirksame Regelung der Schweißleistung zur Absicherung von homogener Einschweißtiefe und Nahtgeometrie. Eine besondere Herausforderung ist das Schweißen der Wurzellage. Das Spaltmaß zwischen den Bauteilhälften kann aufgrund der Toleranzen beim Materialzuschnitt nur begrenzt konstant gehalten werden. Zusätzlich kommt es durch den schweißbedingten Wärmeeintrag zu einem Verzug während des Schweißens. Daher muss die Lichtbogenleistung und damit die Streckenenergie in situ lokal und transient an die herstellungsbedingten geometrischen Toleranzen angepasst werden.
Das wissenschaftliche Ziel besteht in der Entwicklung eines sensorbasierten Regelsystems zur Realisierung eines automatisierten MSG-Hochleistungs-Schweißprozesses. Die Sensoren zur Geometrie- und Temperaturerkennung sind zwar einzeln in der Schweißtechnik im Einsatz, jedoch existieren keine kombinierten Regelsysteme. Die Herausforderung besteht im zeitlichen und örtlichen Abgleich und der Kombination der Sensorsignale zu einer auswertbaren Größe und einem daraus abgeleiteten Regelprozess.

Projekt im Forschungsportal ansehen

Neuartige Fügetechnologie zur Herstellung hybrider Bauteilstrukturen mit kurzem Flansch aus höchstfestem Stahl und Aluminium (AiF/IGF Nr. 20164 BR)
Laufzeit: 01.05.2018 bis 31.10.2020

Für die Realisierung eines kostenattraktiven Leichtbaus für mobile Anwendungen im Dünnblechbereich wurde ein Verfahren für Mischverbindungen aus hoch- und höchstfesten Stählen mit Aluminiumblechen entwickelt, bei dem einfache kostengünstige Fügeelemente und kurze Flansche <10 mm realisiert werden können und das auch unter unterschiedlichen Produktionsrandbedingungen flexibel anwendbar ist. Die Technologie basiert auf der Widerstandsschweißtechnik und stellt eine Alternative zu den für Werkstoffkombinationen üblichen mechanischen Fügeverfahren dar.
Der Prozess ist zweistufig. In einem ersten Schritt wird das Fügeelement auf dem Al-Blech mittels Widerstandsschweißen fixiert. In dem zweiten Schritt erfolgt das Verbindungsschweißen mit dem hochfesten Stahlblech. Die Fügeelemente werden aus Schweißdraht hergestellt. Sie bilden in der Verbindungsebene den Werkstoffübergang von Stahl auf Aluminium, ohne das intermetallische Phasen die Verbindungseigenschaften verschlechtern. Die Verbindungsbildung zum Stahlblech erfolgt durch einen sehr kurzen Schweißprozess von etwa 10 ms und bringt dabei so wenig Wärme ein, das zusätzliches Kleben möglich ist.
Die Verbindungseigenschaften wurden an geeigneten Prüfkörpern ermittelt und optimiert. An einer speziellen Mehrpunktprobe erfolgte die Nachbildung der komplexen Beanspruchungen im Produktionsprozess sowie im Betrieb. Neben den Anwendern aus dem Bereich Fahrzeugbau sowie der Komponenten- und Zuliefererindustrie waren Hersteller von Schweißanlagen in den Projektausschuss eingebunden. Der Abschlussbericht ist erhältlich bei der Forschungsvereinigung Stahlanwendung e.V. (https://www.stahlforschung.de/)
Das IGF-Vorhaben 20164 BR / P 1294 der Forschungsvereinigung Stahlanwendung e.V. (FOSTA), Sohnstraße 65, 40237 Düsseldorf, wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Den Mitgliedern des projektbegleitenden Ausschusses sei für ihre wertvolle Unterstützung herzlich gedankt.

Projekt im Forschungsportal ansehen

Lokale Werkstoffbeeinflussung beim Formhärten zur Verbesserung der Fügbarkeit von Bauteilen aus 22MnB5 (AiF/IGF Nr. 19.797 BG)
Laufzeit: 01.01.2018 bis 31.05.2020

Um das Einsatzgebiet formgehärteter Bauteile zu erweitern ist eine prozesssichere Verbindungstechnik unerlässlich. Bisher werden ultrahochfeste Bauteile im Karosseriebau mit dem Verfahren des Widerstandspunktschweißens mit anderen Komponenten verbunden. Insbesondere bei Mehrblechverbindungen treten dabei Herausforderungen auf, wie eine ungleichmäßige Schweißlinsenbildung mit fehlerhafter Anbindung. Ebenfalls können mechanische Fügeverfahren, wie das Stanznieten aufgrund der hohen Härte der formgehärteten Bauteile nur bei eingeschränkten Materialkombinationen oder einer Vorbehandlung des warmumgeformten Materials eingesetzt werden. Dazu wird häufig eine zweite Anlassbehandlung durchgeführt, um die Festigkeit des Werkstoffes nach dem Formhärten zu senken. Dies stellt allerdings einen zusätzlichen Verfahrensschritt dar, welcher die Prozesszeit verlängert sowie die Kosten erhöht.
 
Im Rahmen des Forschungsprojektes werden gezielt plastische Verformungen beim Formhärten des Vergütungsstahls (22MnB5) in der Fügezone eingebracht. Neben der lokalen Verringerung der Materialdicke, sollen so punktuell die Werkstoffeigenschaften beeinflusst werden, infolge einer deformationsinduzierten Ferritbildung. Zu diesem Zweck erfolgen am IFUM-Hannover die Untersuchungen zu dem Formhärten sowie der Konstruktion und Herstellung eines Umformwerkzeuges. Der Fokus der Otto-von-Guericke-Universität Magdeburg liegt auf der Erweiterung der Fügbarkeit von Materialkombinationen mit 22MnB5 durch das Widerstandspunktschweißen sowie dem Halbhohlstanznieten. Hierzu sollen die Randbedingungen für die einzubringende Materialausdünung aus der fügetechnischen Sicht ermittelt werden.
Ziel des Forschungsvorhabens soll es sein, eine Verbesserung der Fügbarkeit sowie der mechanischen Eigenschaften hinsichtlich des Widerstandspunktschweißens und Stanznietens von formgehärteten Mangan-Bor-Stählen zu erreichen. Abschließend soll durch ein Demonstratorwerkzeug die Herstellung von T-Profilen mit lokaler Werkstoffbeeinflussung im Fügebereich ermöglicht werden, um eine zukünftige Nutzung in der industriellen Praxis abzusichern.

Projekt im Forschungsportal ansehen

Sensorgestützte Mechanisierung von Wurzelschweißungen für geschweißte Stahlträger
Laufzeit: 01.06.2018 bis 31.05.2020

Es wird eine Technologie erarbeitet , mit der die sichere Fertigung von Wurzelschweißlagen an dickwandigen Stahlstrukturen bei gleichzeitig erheblicher Steigerung der Wirtschaftlichkeit durch die Nutzung moderner Anlagen- und Sensortechnik erreicht wird. Die Anwendung erfolgt durch beidseitig synchronem MSG-Schweißen der Wurzellagen an T-Stößen des schweren Stahlbaus. Hierzu sind verschiedene hochdynamische Sensorsysteme zur Überwachung des Schweißprozesses mit entsprechenden Steuerungen der beiden Schweißanlagen zu einer beidseitig synchronen Schweißanlage zu koppeln.

Projekt im Forschungsportal ansehen

Entwicklungen und Untersuchungen von Qualitätskriterien beim Kurzzeitwiderstandsschweißen mit hoher Wärmestromdichte (AIF/IGF-Nr.: 19.878 BR)
Laufzeit: 01.01.2018 bis 30.04.2020

Das Widerstandsschweißen stellt ein sehr kosten- und energieeffizientes Schweißverfahren für den Dünnblechbereich dar, wie die weite Verbreitung u. a. in der Automobil- und Fahrzeugproduktion belegt. Bei der Optimierung von Schweißprozessen hinsichtlich reduzierten Wärmeeintrags durch sehr kurze Schweißzeiten mit entsprechend konzentrierter Energieeinbringung besteht die Herausforderung in der abschließenden Bewertung der Schweißverbindungen. Eine fehlende Schmelzlinse und eventuelle Spritzerbildung lassen eine Bewertung nach gängigen Regelwerken nicht zu, obwohl Verbindungen ohne und mit erkennbarer Schmelzlinse vergleichbare Festigkeiten und Bruchbilder zeigen. Im Rahmen des Forschungsprojektes werden gezielt Schweißverbindungen mit zuvor genanntem Eigenschaftsprofil erzeugt und analysiert. Der Fokus liegt hierbei auf Funktionselement-Blech-Verbindungen. Dabei werden für den Anwender erforderlichen Kenntnisse zum Prozessablauf, den werkstofflichen Beeinflussungen und den qualitativen Anforderungen an die Verbindungen erarbeitet. Die Innovation liegt in der wissenschaftlichen Beschreibung sehr kurzer Schweißprozesse und der Ausarbeitung von Qualitätskriterien für Schweißverbindungen ohne Schmelzlinse und eventueller Spritzbildung sowie Aussagen über deren Verbindungscharakteristik, um eine zukünftige Nutzung in der industriellen Praxis abzusichern

Projekt im Forschungsportal ansehen

Erforschung von elektrolytischen Beschichtungssystemen für Verbindungselemente aus höchstfesten Werkstoffen ("ELOBEV") - Teilprojekt: Analyse der Rissentstehung und Ableitung einer Prüfmethodik
Laufzeit: 01.01.2017 bis 31.12.2019

Das geplante Vorhaben, gefördert durch das Bundesministerium für Bildung und Forschung (BMBF), verfolgt das Ziel die Anwendungsgrenzen von Hilfsfügeelementen zum Verbinden hochfester Werkstoffe im Mischbau auszuweiten. In der Praxis treten bei verformten und unter hohen Zugspannungen stehende Verbindungselemente aus höchstfesten Stahlwerkstoffen die Phänomene der wasserstoffunterstützen Kaltrissbildung (HACC Hydrogen Assisted Cold Cracking) und bei entsprechender Temperatur, der Flüssigmetallversprödung (LMAC Liquid Metal Assisted Cracking) auf. Analysen der Bruchflächen von Halbhohlstanznieten zeigen in diesen Fällen einen interkristallinen Rissverlauf, wobei die Bruchflächen teilweise mit Bestandteilen der Beschichtung, insbesondere mit Zinn belegt waren, siehe Abbildung 1. Diese Indizien deuten auf wasserstoffunterstützte bzw. flüssigmetallinduzierte Rissbildung als Bruchursache hin.
Im Fokus der Betrachtung steht daher das Halbhohlstanznieten, als wichtigstes Fügeverfahren für Karosseriemischbaustrukturen. Dazu werden unterschiedliche Beschichtungssysteme und -prozesse hinsichtlich einer unzulässigen Wasserstoffaufnahme sowie ihrer Anfälligkeit auf LMAC, durch Ersatzproben, geprüft und bewertet.
Im Rahmen des Teilprojektes sollen mittels kathodischer Wasserstoffbeladung Proben mit Wasserstoff angereichert werden. Diese werden im Anschluss einer mechanischen Prüfung unter konstanter Last unterzogen. Die Messung des diffusiblen Wasserstoffs und dessen Diffusionsgeschwindigkeit erfolgt mittels thermischer Desorptionsanalyse (TDA), unter Nutzung eines Quadrupol-Massenspektrometers. Dadurch erfolgt gleichzeitig eine Bewertung der verschiedenen Überzugskonzepte auf ihre Barrierewirkung gegenüber einer Wasserstoffaufnahme. Ziel ist es die kritische Belastung der Proben in Abhängigkeit des Wasserstoffkonzentrationsprofils im Bauteil zu bestimmen. Die Verteilung des Wasserstoffs in den Proben wird mittels Diffusionsgleichungen berechnet und eingestellt. Die Einstellung des Konzentrationsprofils erfolgt durch gezielte Variation der elektrolytischen Beladungsparameter sowie Modulation der Desorptionsdauer. Zusätzlich soll mit Hilfe der Diffusionsgesetze ein Abgleich zwischen den ermittelten Werten, Diffusionskoeffizient, mittlere Wasserstoffkonzentration und der Randkonzentration während der Beladungsversuche, durchgeführt werden.
Der Rissmechanismus der flüssigmetallinduzierten Versprödung wird durch verschiedene mechanische und thermische Belastungssituationen untersucht, angelehnt an die industrielle Praxis der Nietherstellung und der automobilen Fertigungsprozesskette. Im Vordergrund werden die Einflüsse der wirkenden Zugspannungen, der Temperatur Zeit Regime sowie der Aufheizraten auf die Proben geprüft. Die Betrachtung der Bruchflächen wird den Kenntnisstand, bezüglich Eindringtiefe des flüssigen Metalls und der damit einhergehenden Querschnittverjüngung der Proben, in Abhängigkeit zu jeweiligen Belastungssituation, erweitern.
Als Ergebnis sollen neue wirtschaftliche Beschichtungsprozesse für höchstfeste Hilfsfügeelement als Schüttgut etabliert werden. Den Anwendern aus der Automobilindustrie stehen dann großseriengeeignete Fügeelemente zum Verbinden komplexer Materialkombinationen zur Verfügung, die die Umsetzung innovativer Karosseriekonzepte, mit z. B. der Kombination höchstfester Stähle mit Aluminium, eine Verringerung des Fahrzeuggewichts ermöglichen. Die gewonnenen Erkenntnisse des Vorhabens können zudem auf andere Hilfsfügeteile und Anwendungsbereiche übertragen werden.

Projekt im Forschungsportal ansehen

Zerstörungsfreie Qualitätsbewertung von MSG-Schweißverbindungen von Stahlfeinblech durch Nutzung geometrischer und thermographischer Kenngrößen, (MSGeoTherm) (AiF/IGF-Nr.: 18.550B)
Laufzeit: 01.01.2017 bis 31.05.2019

Bei der Fertigung von Strukturen mittels MSG-Schweißen aus Stahlfeinblech stellt der zerstörungsfreie Nachweis von Nahtunregelmäßigkeiten eine technologische und wirtschaftliche Herausforderung dar. Insbesondere in der automatisierten Großserienfertigung ist die zerstörende Prüfung der Standard zum Nachweis häufig auftretender innerer Nahtunregelmäßigkeiten wie Einbrandfehlern und Poren. Mit dem Projekt soll eine fertigungsbegleitende zerstörungsfreie Prüfmethode erforscht werden, die unmittelbar nach dem Schweißvorgang innere Nahtunregelmäßigkeiten erkennt und die mit geringem Aufwand an die jeweilige Fertigungssituation und -aufgabe angepasst werden kann.

Der Ansatz des Forschungsvorhabens besteht in der Nutzung von Sensoren zur Aufnahme der Schweißnahtoberfläche und des Temperaturfeldes. Durch die kombinierte Auswertung beider Sensorsignale sollen die Nachteile der Nutzung der jeweils einzelnen Systeme kompensiert werden.

Das Ziel des Projektes MSGeoTherm ist, einen Zusammenhang zwischen der Nahtgeometrie und dem Temperaturfeld anhand der Sensorsignale zu charakterisieren, sodass eine zuverlässige zerstörungsfreie Abschätzung innerer Nahtunregelmäßigkeiten wie der Einbrandtiefe möglich wird.

Beim Aufbau der Versuchsanordnung mit Schweißbrenner, Lichtschnittsensor und Thermoprofilscanner zeigte sich ein starker Einfluss der räumlichen Anordnung auf die Beschaffenheit der aufgezeichneten Daten. Besonders deutlich wird dies am Beispiel des Thermoprofilscanners mit einem Messbereich zwischen ca. 850°C und 1350°C. Die Abbildung zeigt drei Temperaturfelder, die in einem Abstand von 20mm zum Lichtbogen aufgezeichnet wurden. Angestrebt werden Daten wie in der mittleren Abbildung. Hier liegen die gemessenen Maximaltemperaturen bei ca. 1250°C, sodass der Messbereich sehr effektiv ausgenutzt wird. In der linken Abbildung wurde der Messbereich überschritten, sodass hier die Maximaltemperatur nicht ausgewertet werden kann. Die Abbildungen links und mittig unterscheiden sich durch den Grundwerkstoff. Bei der Abbildung rechts kam ein konventioneller Kurzlichtbogen-Prozess zum Einsatz, dessen Schweißnaht aufgrund des geringen Drahtvorschubs schneller abkühlt.
Als Ergebnis der ersten Versuchsreihe kann festgehalten werden, dass der Messaufbau jeweils individuell auf die Werkstoff-Schweißprozess-Kombination angepasst werden muss, um brauchbare Daten generieren zu können.

Projekt im Forschungsportal ansehen

Untersuchungen zum Einfluss des Oberflächen- und Werkstoffzustandes auf die Widerstandspunktschweißbarkeit partiell formgehärteter Bauteile (AiF/IGF-Nr.: 18.939 B)
Laufzeit: 01.12.2016 bis 30.04.2019

Im Rahmen des Forschungsvorhabens "Untersuchungen zum Einfluss des Oberflächen- und Werkstoffzustandes auf die Widerstandspunktschweißbarkeit formgehärteter Bleche" (IGF-Nr.: 18.939B/DVS-Nr.: 04.060) wurde der Einfluss der Oberflächenschichten von Zn- und Al-Si-beschichteten Bauteilen aus 22MnB5 ermittelt. Speziell der Wärmebehandlungszustand und damit die Variationen der Schicht- und Werkstoffzustände auf die Widerstandspunktschweißbarkeit gehärteter Bauteile wurde untersucht, um den Prozess des partiellen Formhärtens durch den Eingriff in den Ofenprozess nachzubilden.

Für Zn-beschichtete Werkstoffe eignet sich die Messung der Übergangswiderstände beschrieben in DVS 2935-3. Die durchgeführten Untersuchungen zeigten eine gute Übereinstimmung zwischen dem gemessenen Übergangswiderstand und der Größe des Schweißbereiches. Im Fall von Al-Si-beschichteten Proben konnte keine Korrelation zwischen dem gemessenen Übergangswiderstand und Größe oder Lage des Schweißbereiches festgestellt werden. Die Anwendung der Übergangswiderstände zur Abschätzung der Schweißeignung nach DVS 2935-3 wird für Al-Si beschichtete pressgehärtete Bleche nicht empfohlen. Ebenfalls wurde keine Korrelation zwischen der Farbe der Oberflächenschichten nach dem Presshärten und der Schweißeignung des Werkstoffes festgestellt.
Die Schweißeignung von Al-Si beschichteten partiell gehärteten Bauteilen konnte mit der Schichtentwicklung korreliert werden. Aus den umfangreichen metallographischen Untersuchungen und deren Abgleich mit der Literatur und eigenen Untersuchungen zur Ermittlung der Schweißbereiche in Anlehnung an SEP 1220-2 wurde ein Kriterium zur Abschätzung der Schweißeignung alternativ zu den Widerstandsmessungen entwickelt. Abbildung 1 zeigt eine Korrelation zwischen dem Anteil intermetallischer Phasen in der Schicht (SBCE) und Schweißeignung der Zweiblechverbindungen.

Aus dem Abgleich zwischen REM/EDX und lichtmikroskopischen Aufnahmen sowie basierend auf Ergebnissen aus der Literatur wurde eine Vorlage zur Identifikation einzelner Bereiche der Al-Si-Schichten aufgezeigt, die eine Ermittlung des vorgeschlagenen Kriteriums SBCE anhand der lichtmikroskopischen Untersuchungen erlaubt und somit die industrielle Nutzung dieses Kriteriums ohne Notwendigkeit der ressourcenintensiven REM-Untersuchungen, was vor allem für KMUs vom großen Vorteil ist.

Umfangreiche Untersuchungen der Festigkeit von Schweißverbindungen unter verschiedenen Belastungsarten und Richtungen wurden ebenfalls durchgeführt. Zum Nachweis der Auswirkungen des schweißbedingten Wärmeeintrags auf die Eigenschaften des Grundmaterials wurde eine spezielle Zugprobe mit Opferblech entwickelt. Hier zeigte sich ein zunehmender Einfluss des Wärmeeintrags auf die mechanischen Verbindungseigenschaften.
Bei Belastung der Schweißverbindung auf Kopf- und Scherzug konnte der beobachtete Abfall der mechanischen Eigenschaften mit einer stärkeren Ausprägung der Erweichungszone an der Schmelzlinie korreliert werden.

Insgesamt wurden im Rahmen des Forschungsprojektes über 5500 Schweißverbindungen gefertigt und geprüft. Die im Schweißprozess gemessenen Verläufe von Schweißstrom, Schweißspannung, Elektrodenkraft und Elektrodenweg wurden durchgängig dokumentiert und fließen in eine Datenbank für weitere Auswertungen ein. Dies ermöglicht die Nutzung dieser Daten für eine simulative Abbildung von Schweißprozessen an Blechen mit verschiedenen Werkstoff- und Schichtzuständen.

"Für die wertvollen Ergebnisse in dem Forschungsvorhaben möchte ich mich ausdrücklich bei den Projektbearbeitern bedanken. Die gewonnenen Erkenntnisse erleichtern es uns als Hersteller von Buckelschweißlösungen zukünftig wesentlich, Probleme der Schweißbarkeit mit unseren Kunden zu diskutieren. Die Projektbearbeiter haben in eindrucksvoller Weise die Ursachen der unterschiedlichen Schweißbarkeit von AlSi-beschichteten Bauteilen ermittelt. So wird es auch möglich sein, auf exakte Parameter beim Härten der Bauteile zu lenken."
Dr. Hans-Jürgen Rusch, Kapkon GmbH

"Durch das Forschungsvorhaben konnten wir unsere Erfahrungen zum Widerstandspunktschweißprozess von pressgehärteten Stählen mit AlSi- und Zn-Beschichtung zum einen wissenschaftlich festigen, sowie neue Erkenntnisse über Schweißverhalten bei unterschiedlichen Wärmebehandlungszuständen gewinnen. Ein typischer Anwendungsfall sind z.B. Tailored Blank Bauteilen mit Patcheinsatz, die stets veränderte Blechstärken über die Bauteillänge aufweisen. Anhand der Forschungsergebnisse können die Grenzen für den phs-Ofenprozess für diese Art von Bauteilen noch gezielter definiert und mit den verifizierten Grundparametern für das Widerstandspunktschweißen auf signifikante Veränderungen der Werkstoffeigenschaften direkt reagiert werden."

Jörg Maier, voestalpine Automotive Components Schwäbisch Gmünd GmbH & Co. KG

" Der Forschungsbericht kann auf Anfrage bereitgestellt werden"

Projekt im Forschungsportal ansehen

Entwicklung einer Nebenschlusselektrode als Werkzeug zum flexiblen Widerstandsschweißen (Förderkennzeichen: ZF 4122803 FH6)
Laufzeit: 01.12.2016 bis 31.01.2019

Die Entwicklungen in der Transport- und Automobilindustrie haben in den letzten Jahren aufgrund der Leichtbauanforderungen zunehmend an Dynamik gewonnen. Angesichts dessen ergeben sich neue Anforderungen an die Fertigungsprozesse sowie der dazu erforderlichen Anlagentechnik. Obgleich es in den letzten Jahren eine stetige Neu- und Weiterentwicklung im Bereich der Fügetechnologien gab, ist das im Bereich der Blechverarbeitung und des Karosseriebaus am häufigsten angewendete Fügeverfahren weiterhin das Widerstandspunktschweißen. Um die Vorteile der Widerstandsschweißtechnik weiter zu nutzen und die zukünftigen Herausforderungen und Aufgaben weiterhin durch die Widerstandsschweißtechnik zu lösen, bedarf es Innovationen in der Anlagentechnik, wie sie in dem geplanten Projekt erfolgen soll.
Die als Nebenschlusselektrode bezeichnete Entwicklung beschreibt eine Verfahrenserweiterung zum Widerstandspunktschweißen, bei der die Punktschweißelektrode durch eine zusätzliche Elektrode ergänzt wird. Der Aufbau einer Konzeptanlage mit der elektrischen und geometrischen Auslegung der Nebenschlusselektrode sowie die Erforschung geeigneter Prozessabläufe für ausgewählte Anwendungen sind Gegenstand dieses Forschungsvorhabens.

Projekt im Forschungsportal ansehen

Teilprojekt COMO III: AS1 - Fügetechnik beim Radnabenmotor (Fördernr.: ZS/2016/04/78118)
Laufzeit: 01.01.2016 bis 31.12.2018

Das Ziel des Teilprojektes ist die Entwicklung und die Erprobung unterschiedlicher serienreifer Klebekonzepte zum Fügen der Kupferdrahtwicklung für eine neuartige Luftspaltwicklung des Radnabenmotors in unterschiedlichen Generationen. Dabei wird der zum Projektstartpunkt bereits etablierte Prozess der Aufbringung der Kupferdrahtwicklung auf die Eisenrückschlussoberfläche analysiert und daraus der Optimierungsbedarf sowohl für die Fügepartner als auch für jeden Schritt des Klebeprozesses abgeleitet. Zu den Teilprojektzielen gehören:

      • die  Optimierung, Neuentwicklung sowie Erprobung der Klebesysteme für unterschiedliche Fertigungskonzepte der Luftspaltwicklung
      • Untersuchung unterschiedlicher Isolierstoffe für die durchschlagfeste Gestaltung der Klebeverbindung
      • Optimierung der Kupferleiter
      • Auswahl und Umsetzung der Bandagierlösungen zum Verfestigen und Isolieren der aufgeklebten Kupferwicklungen
      • Erarbeitung von Prüfmethoden zur Klebstofferprobung.
    Als Klebsysteme sind flüssige Klebstoffe auf unterschiedlicher chemischer und physikalischer Basis sowie trägerlose Transferklebefolien sowie elektrisch isolierende Klebefolien zu testen bzw. zu bewerten. Als Isolierstoffe werden umweltfreundliche Isolierlacke und Isolationsfolien erprobt. Große Aufmerksamkeit wird der Einhaltung des erstellten Anforderungsprofils an die elektrische Sicherheit und die Gesamtdicken der Klebsysteme gewidmet. Zum Projektlaufzeitende soll ein Modell für unterschiedliche Klebsysteme mit entsprechenden Kennwerten und Fertigungsabläufen vorgestellt werden.
        Wesentliche Forschungsergebnisse sind bisher:
        • Erstellung und Erprobung von vier Klebkonzepten zum Fixieren der Kupferlackdrähte unter dem Einsatz von Reaktionsklebstoffen auf dem lackierten Stator bzw. auf einer einseitig klebenden Isolierfolie und mittels einer doppelseitig klebenden Transfer- oder Elektroisolierklebfolie
        • Auswahl handelsüblicher und Modellierung neuer an das Anforderungsprofil angepasster Klebstoffprodukte
        • Auswahl der Isolierlacke und Durchführung der Lackierversuche zum Isolieren des Stators mithilfe eines Spritzverfahrens
        • Erarbeitung der Tests und Prüfverfahren in Anlehnung an die Regelwerke sowie an die Betriebsanforderungen der Luftspaltwicklung des Radnabenmotors
        • Entwicklung der Bandagierverfahren der Luftspaltwicklung.

Projekt im Forschungsportal ansehen

Umwandlungsverhalten von kohlenstoffhaltigen Stählen beim Kurzzeitschweißen
Laufzeit: 01.10.2016 bis 30.09.2018

Das Kondensatorentladungsschweißen (KE-Schweißen) ist in der Serien- und Massenfertigung wegen seiner kurzen Stromanstiegszeit und im Vergleich zu dem konventionellen Punkt- oder Buckelschweißen der niedrigen, schnellen Wärmeeinbringung  sowie der guten Reproduzierbarkeit und der Möglichkeit der Automatisierung  und Parameterüberwachung ein sehr wichtiges Fügeverfahren. Das KE-Schweißen ermöglicht unterschiedliche Werkstoffe, Materialdicken, Werkstoffe mit hoher thermischer Leitfähigkeit, wärmeempfindliche oder auch beschichtete Bauteile zu verschweißen. In Bezug auf einen innovativen Leichtbau wurden von Stahlproduzenten in der Zeit eine Reihe von höher-, hoch- und höchstfesten Feinblechwerkstoffen entwickelt, die auch zunehmend in der blechverarbeitenden Industrie verwendet werden, zum Beispiel werden höherkohlenstoffhaltigen Stähle für Teile, die hohe Verschleißfestigkeit aufweisen sollen, verwendet. Beim Schweißen jedoch härten diese Werkstoffe in Abhängigkeit vom Kohlenstoff und den Legierungselementen teilweise enorm auf und neigen sehr stark zur Versprödung. Um dies zu verhindern oder Gebrauchsfähigkeit wieder herzustellen, müssen aufwendige Wärmebehandlungen vor und nach dem Schweißen durchgeführt werden. KE-Schweißen bietet durch den schnellen Stromanstieg den Vorteil kurzer Stromzeiten bis zu 10ms. Im Endeffekt können die höherkohlenstoffhaltigen Stähle prozesssicher miteinander verschweißen, d.h. die zusätzliche Wärmebehandlung erfolgt direkt durch die Stromimpulse.
Das Ziel dieses Forschungsvorhabens ist es, grundlegende werkstoffkundliche und verfahrenstechnische Arbeits- und Randbedingungen zum KE-Schweißen von höherkohlenstoffhaltigen Werkstoffen zu erarbeiten. Es sollen neue Erkenntnisse über die Schweißbarkeit von nicht unbedenklich schmelzschweißgeeigneten Vergütungsstählen (Kohlenstoffgehalt  > 0,2 %) gewonnen werden. Hier ist die Frage zu beantworten, inwieweit sich die extrem hohen Aufheizgeschwindigkeiten und die hohe Energiedichte positiv auf die Schweißung auswirken. Im Rahmen dieser Arbeit wurden neue Erkenntnisse zum KE-Schweißen höherkohlenstoffhaltiger Stähle erarbeitet. Es hat sich gezeigt, dass unter Voraussetzung geeigneter Parameterwahl rissfreie Verbindungen erzeugt werden können. Auf diese Weise kann man auch ein geeignetes Gefüge in der Schmelz- und Wärmeeinflusszone erzielt werden, um ein sicheres Verhalten der Schweißverbindung zu gewährleisten. Gleichzeitig wird der Einfluss der Schweißparameter, der Impulscharakteristik und der Werkstoffe während des KE-Schweißen auf die Schweißverbindung untersucht.

Projekt im Forschungsportal ansehen

Entwicklung eines Reibgesetzes zur Erfassung des Drehzahleinflusses bei der Reibschweiß-Prozesssimulation (AiF/IGF-Nr.: 18.966 B)
Laufzeit: 01.01.2016 bis 31.05.2018

Reibschweißen ist ein Fügeverfahren, welches aufgrund seiner Prozessstabilität und genauigkeit unter anderem im Automobil-, Turbinen- und Schiffsbau Anwendung findet. Zur Sicherstellung einer gleichbleibenden Qualität der Fügeteile sind Prozessparameter zu wählen, welche in Abhängigkeit von den zu fügenden Werkstoffen und deren Geometrie aus tabellarischen Parameterfenstern entnommen werden können. Dies erlaubt jedoch keinen Bezug zwischen Einstell- und Reaktionsgrößen des Prozesses, weshalb keine Prozessparameterwahl in Abhängigkeit gewünschter qualitativer Fügeverbindungsmerkmale erfolgen kann. Eine Möglichkeit, diesen Bezug herzustellen und somit die Prozessstandardisierung sowie Fertigungsqualität zu erhöhen und zu vereinheitlichen sind Prozessparameterkarten, welche den Bezug zwischen der Drehzahl, Reibkraft, Reibmoment und Verkürzungsrate einfach herstellen und somit im Rahmen der Fertigung als Arbeitsanweisung zur Verfügung gestellt werden können.

Aufgrund der notwendigen detaillierten Erfassung des Parameterraumes ist eine experimentelle Ermittlung der Prozessparameterkarten nur bedingt wirtschaftlich. Zur wirtschaftlichen Erfassung des gesamten Parameterraumes können Prozesssimulationswerkzeuge eingesetzt werden, insofern diese prädiktiv den Prozess abbilden können. Im Rahmen des Projektes steht ein vollständig gekoppelter thermodynamisch-mechanischer Modellierungsansatz, welcher in einem eigenständigen FE-Code umgesetzt ist, zur Verfügung. Ein generelles Problem bei der Abbildung von reibungsbasierten, rotatorischen Fügeverfahren ist, dass die bekannten Reibmodelle den Drehzahleinfluss nicht berücksichtigen, wodurch die Simulation bei einer Drehzahlvariation zu Abweichungen der Verkürzungsrate führt. Ein vielversprechender Ansatz ist die Modifikation des Reibmodells dahingehend, dass dieses um den Parameter der drehzahlabhängigen Schlupfgeschwindigkeit erweitert wird. Das Ziel des Projektes ist es daher, Prozessparameterkarten wirtschaftlich durch die Nutzung eines prädiktiven Prozesssimulationswerkzeuges mit modifiziertem Reibgesetz, welches die drehzahlabhängige Schlupfgeschwindigkeit berücksichtigt, zur Verfügung zu stellen.
 
Geplante Ergebnisse:

1.  Entwicklung eines maschinenunabhängigen und portablen Momentenmessadapters zur 
     Erfassung des Momentenverlaufs beim Rotationsreibschweißprozess.
2.  Gewinnung thermophysikalischer Materialkenndaten zum Aufbau eines Materialmodells
     für die Reibschweißprozesssimulation.
3.  Kalibrierung der Prozesssimulation anhand von Experimentaldaten und Modifikation des
     Reibgesetzes zur Berücksichtigung der drehzahlabhängigen Schlupfgeschwindigkeit.
4.  Simulative DoE für einen festgelegten Prozessparameterraum und Ableitung der
     Zusammenhänge zwischen Drehzahl, Reibkraft, Reibmoment und Verkürzungsrate.
5.  Wirtschaftliche Ableitung werkstoff- und geometrieabhängiger Prozessparameterkarten
     anhand von prädiktiver Simulationsdaten.

Projekt im Forschungsportal ansehen

Untersuchungen zur Herstellung von Stahl-Aluminium-Mischverbindungen mittels Widerstandspunktschweißtechnologie
Laufzeit: 01.01.2017 bis 30.04.2018

Heutzutage steht die Entwicklung der Leichtbaukonzepte in Mischbauweisen im Automobilbau im Vordergrund und bei der Entwicklung von modernen Kraftfahrzeugen. Die Kombinationen von unterschiedlichsten Materialpaarungen ermöglichen vielfältige Karosseriestrukturen, wobei der Materialmix Aluminium und hochfester Stahl unter dem Gesichtspunkt des Leichtbaus von besonderem Interesse ist. Allerdings stehen für das Fügen von dieser Werkstoffkombination aufgrund ihrer sehr unterschiedlichen chemischen und physikalischen Eigenschaften jedoch nur eingeschränkt Fügeverfahren zur Verfügung. Aufgrund der zunehmenden Zahl von Anwendungen zwischen höchstfesten Stahlgüten und Aluminiumwerkstoffen wurden neue fügetechnische Lösungen realisiert, die jedoch alle ihrs spezifischen Grenzen haben. So ist der erforderliche Randabstand meißt groß, so dass sich keine gewichtsoptimierten kurzen Flansche realisieren lassen. Auch ist die mögliche fügbare Blechdicke des höchstfesten Stahls begrenzt.
Im Rahmen des Promotionsvorhabens sollen neue Lösungen auf Basis des Widerstandsschweißens für die Herstellung von Stahl-Aluminium-Mischverbindungen, insbesondere in Kurzflanschverbindungen entwickeln werden. Zu Berücksichtigen sind dabei die Randbedingungen einer Großserienproduktion sowie die erforderlichen Verbindungseigenschaften. Mit den Ergebnissen des Promotionsvorhabens kann ein bedeutender Fortschritt in der Weiterentwicklung und praktischen Anwendung der Fügeverfahren für artfremden Materialien nicht nur in Kraftfahrzeugbau sondern auch in Luft und Raumfahrbau und in anderen Industriebereiche erzielt werden.

Projekt im Forschungsportal ansehen

Entwicklung einer neuen Technologie und neuartiger Werkzeuge zur Herstellung von Prototypenbauteilen aus höchstfesten Stählen durch Formhärten (ProForm) (Förderkennzeichen: KF 3173603)
Laufzeit: 01.05.2015 bis 30.10.2017

Die Anwendung formgehärteter Bauteile nimmt im Automobilbau stetig zu und erreicht in modernen Karosserien gegenwärtig einen Gewichtsanteil von bis zu 20 %. Die für dieses wachsende Marktsegment erforderlichen Fertigungstechnologien (Warmumformung mit anschließendem Härten im Werkzeug) sind auf Grund ihrer Komplexität (kostenintensive Werkzeuge, lange Ofenstraßen und aufwendige geschwindigkeitsregulierte Kühlsysteme) nur für Serienfertigungen wirtschaftlich. Für kleine Stückzahlen, im Prototypenteilebau und zur angestrebten Entkopplung zwischen Prototypenteile- und Serienteilelieferanten in Produktentstehungsprozessen sind die Vorteile borlegierter Stähle und des Formhärtens bisher nicht wirtschaftlich effizient nutzbar.
Projektziel ist die Entwicklung einer neuen Technologie und neuartiger Werkzeuge zum Formhärten borlegierter Stähle für Prototypenteile (Stückzahlen 5 100). Dabei sollen mit segmentierten Werkzeugen, partiellen Temperierungen zur lokalen Beeinflussung der Bauteileigenschaften, optimierter Wärmeableitung bei passiver Kühlung und ZfP-Methoden zur Qualitätsbewertung Teile in Serienqualität schnell und wirtschaftlich gefertigt werden.

Projekt im Forschungsportal ansehen

Verfahrensentwicklung zur Herstellung von hybriden FVK/Stahl-Strukturen mittels eines neuartigen Blechverbindungselementes (AiF/IGF-Nr.: 18.409 BG)
Laufzeit: 01.05.2015 bis 30.08.2017

In diesem Forschungsvorhaben soll eine Technologie zur kraftflussgerechten und schädigungsarmen Verbindung von Stahl- und FVK Werkstoffen entwickelt werden. Das Verfahren nutzt dabei ein neuartiges Blechverbindungselement, welches im ersten Schritt den FVK durchdringt und diesen dann stoffschlüssig an das darunterliegende Blechbauteil anbindet. Die Blechverbindungselemente für diese Technik sind geometrisch speziell an die faserverstärkten Kunststoffe angepasst. Sie bestehen aus einer Kopfplatte, unter die das Kunststoffteil geklemmt wird und drei daran befindliche Stege, die mit dem Stahlblech stoffschlüssig verbunden werden. Die Blechstege sind derart ausgeführt, dass sie durch induktive Erwärmung oder Schwingungsanregung den FVK unter minimaler Faserschädigung durchdringen und bei Kontakt mit dem Stahlblech durch Widerstandsschweißen angebunden werden können.

Durch die zunehmende Umsetzung von Leichtbaumaßnahmen im Mobilitätssektor kann mit einem wachsenden Markt für hybride Bauteile aus Metall und (faserverstärktem) Kunststoff gerechnet werden. Durch die Flexibilität des im Forschungsvorhaben geplanten Verfahrens in Verbindung mit geringen Investitionskosten in Maschinen- und Anlagentechnik ergeben sich besondere Vorteile für KMU.

Projekt im Forschungsportal ansehen

Ganzheitliche Lebensdauererhöhung von Widerstandspunktschweißelektroden durch Einsatz verschleißabhängiger Fräsintervalle und dispersionsgehärteter Kupferwerkstoffe (AiF/IGF-Nr.: 18.456 B)
Laufzeit: 01.07.2015 bis 30.06.2017

Zur Erhöhung der Lebensdauer von Punktschweißelektroden wurde das Elektrodenkappenfräsen entwickelt, mit dem die Auflegierungsschicht abgespant und die ursprüngliche Elektrodengeometrie wieder hergestellt wird. Die Festlegung der Nacharbeitszyklen erfolgt dabei über Erfahrungswerte, so dass überwiegend zu frühzeitig zu viel Material abgetragen wird. Diese starren Fräszyklen führen zu einem unnötig hohen Materialverbrauch. Die zweite Fragestellung betrachtet die Prozessfähigkeit von Standard CuCr1Zr-Elektroden im Vergleich zu dispersionsgehärteten Kupferelektroden hinsichtlich des Verschleißverhaltens  für unterschiedlich beschichtete hoch- und höchstfeste Stähle (AHSS und UHSS).
Folgende Ergebnisse und Erkenntnisse sind erreicht worden:
1. Lebensdauererhöhung durch bedarfsgerechte Fräseinleitung
    - Punktdurchmesser ist als Kriterium für bedarfsgerechte Fräseinleitung nicht geeignet
    - ineinandergreifende Verschleißmodelle wurden entwickelt, welche den Fräszeitpunkt ermitteln/vorhersagen können
2. Erarbeitung einer Methodik zur Elektrodenwerkstoff-Auswahl
    - Methodik zur anwendungsgerechten Auswahl von Elektrodenwerkstoffen und Prozessparametern hinsichtlich Verschleiß und Frässtrategie
    - Empfehlungen zur Auswahl von Elektrodenwerkstoffen und Prozessparametern hinsichtlich Verschleiß und Frässtrategie
    - Auswahl der Elektrodenwerkstoffe für Materialdickenkombinationen
3. Verschleißmodellbeschreibung und Simulation
     Verschleißmodellbeschreibung metallurgisch:
     - Schichtdicke immer kleiner 150 µm
     - Rissbildung bei Zn-Gehalten  >50 %
     - Makrorisse (bis 3 mm) beim Schweißen der zinkbeschichteten Tiefziehstähle und AlSi-beschichteten pressgehärteten Stählen
     - stärkere Rissbildung aus DX53D+Z100 0,65 mm
     - Kathode anfälliger
    Verschleißmodellbeschreibung mechanisch
     - grundwerkstoffabhängiges Verschleißverhalten (Tiefziehstähle: radiales Fließen der Elektrode mit Pilzbildung)
     - kontinuierliche Zunahme der Elektrodenkontaktfläche mit steigender Punktanzahl -> Verringerung der Stromdichte -> Abnahme der Wärmeeintrags, Verringerung der Flächenpressung -> Zunahme des Wärmeeintrags
     - pressgehärtete Stähle: axiales Fließen in entfestigten Bereichen -> Plateaubildung
     - keine Zunahme der Elektrodenkontaktfläche mit steigender Punktanzahl
     - keine Änderung des Punktdurchmessers

Projekt im Forschungsportal ansehen

Entwicklung einer Kurzimpuls-Widerstandsschweißeinrichtung zum Fügen von Leichtbauelementen
Laufzeit: 02.05.2014 bis 30.04.2016

Das Widerstandsschweißen stellt ein sehr kosten- und energieeffizientes Schweißverfahren für den Dünnblechbereich dar, wie seine weite Verbreitung u.a. in der Automobil- und Fahrzeugproduktion belegt. Mit den Herausforderungen durch den Leichtbau in diesem Bereich werden zunehmend neue höchstfeste Stahlgüten, Leichtmetalle und faserverstärkte Kunststoffe eingesetzt, die zu einer Vielzahl von Neuentwicklungen in der Fügetechnik geführt haben.

In dem Projekt soll daher eine neuartige Schweißstromquelle entwickelt werden, mit der die zukünftigen Leichtbaustrukturen gefügt werden können. Hierzu werden umfangreiche Modellsimulationen entwickelt und geeignete Prozessparameterverläufe abgeleitet, um daraus eine angepasste Anlagentechnik zu realisieren. Dabei soll insbesondere ein neuartiger Leistungsumrichter und Energieübertrager entwickelt werden.

Projekt im Forschungsportal ansehen

Metallschutzgasschweißen von pressgehärteten höchstfesten Stählen mit unterschiedlichen Beschichtungskonzepten
Laufzeit: 01.07.2013 bis 30.11.2015

Formgehärtete Bauteile werden in allen modernen Fahrzeugstrukturen eingesetzt. Das MSG-Schweißen ermöglicht die Herstellung von hochfesten Schweißverbindungen und findet daher insbesondere bei einseitiger Zugänglichkeit Verwendung. Eine Herausforderung beim Einsatz in einer Großserie stellt der Einfluss der Oberflächenschicht dieser Bauteile dar. Je nach Härteprozess und Anforderungsprofil werden unbeschichtete, feueraluminierte oder verzinkte Halbzeuge verwendet. Nach der Wärmebehandlung unterscheiden sich die Oberflächenschichten in ihren Eigenschaften und beeinflussen den MSG-Schweißprozess. Im Rahmen des Forschungsprojekts sollen unterschiedliche Schichtsysteme hinsichtlich ihrer Schweißeignung bewertet und Maßnahmen zur Verbesserung der Prozessstabilität und der Verbindungseigenschaften abgeleitet werden. Dabei kommen verschiedene moderne Kurzlichtbogen-Prozessvarianten wie der CMT- oder Cold-arc-Prozess zum Einsatz.

Projekt im Forschungsportal ansehen

INDRALAS: Innovative drahtförmige Zusatzwerkstoffe laserbasierte Anwendungen- Teilprojekt Schweißeignung und Schweißmöglichkeit
Laufzeit: 01.10.2013 bis 30.09.2015

Aufgrund prozessspezifischer Vorteile sind durch das Laserstrahlschweißen viele anspruchsvolle Aufgaben im Bereich des Fügens und Beschichtens realisierbar. Die Entwicklungstrends in den letzten Jahren sind aktiv auf die Nutzung der Potenziale des Lasers und die Steigerung der Prozesseffizienz beim Laserstrahlschweißen gerichtet. Die bislang eingesetzten Schweißzusätze liegen draht- oder pulverförmig vor, wobei jede Art des Zusatzwerkstoffes durch spezifische Vor- und Nachteile charakterisiert ist. Besonders großer Entwicklungsbedarf liegt beim Einsatz von drahtförmigen Schweißzusätzen, die die bisherigen Vorteile 100%-igen Ausnutzung des Zusatzmaterials und eine hohe Variationsvielfalt der Legierungszusammensetzung des Pulvers kombinieren könnten. Eine neue Perspektive eröffnet sich durch pulvermetallurgisch hergestellte Drähte, deren Durchmesser deutlich geringer als 1mm sind. Hierdurch eröffnet sich eine problemlose und flexible Zusammenstellung der Legierungselemente, die bisher schmelzmetallurgisch nicht zu verarbeiten sind. Solche Schweißzusätze können optimal an die Anforderungen der bearbeitenden Werkstoffe und späteren Gebrauchseigenschaften des Produkts angepasst werden. Das grundlegende Ziel des geplanten Forschungsprojektes ist die Entwicklung von neuartigen, pulvermetallurgisch hergestellten Sinterdrähten im Durchmesserbereich gleich bzw. kleiner als 0,8 mm sowie deren Erprobung zum Laserstrahlschweißen. Dabei ist durch den Industriepartner die Entwicklung der Fertigungstechnologie einschließlich Pulverauswahl- und -beschaffung zu realisieren. Im Rahmen des Teilprojektes „Schweißtechnologien“ sollen die Schweißeignung und Schweißmöglichkeit von Sinterdrähten erprobt, optimiert und beurteilt sowie ein schweißgeeigneter Anforderungsprofil an den Schweißzusatz erstellt werden. Im Ergebnis soll ein allgemeingültiges Werkstoff- und Fertigungskonzept für die untersuchten Sinterdrähte formuliert werden.

Projekt im Forschungsportal ansehen

Optimierung von Verbindungseigenschaften an formgehärteten Bauteilen
Laufzeit: 01.01.2013 bis 30.09.2015

Formgehärtete Bauteile besitzen die höchsten Festigkeiten in automobilen Strukturen. Beim Schweißen werden die Werkstoffeigenschaften negativ beeinflusst, so dass die Verbindungen deutlich geringere Festigkeit besitzen als der Grundwerkstoff. Im Rahmen des Forschungsprojekts werden Einflußgrößen auf die Verbindungseigenschaften untersucht und geeignete prozesstechnische Maßnahmen zur Verbesserung der Eigenschaften ermittelt.

Projekt im Forschungsportal ansehen

Metallschutzgasschweißen von pressgehärteten höchstfesten Stählen mit unterschiedlichen Beschichtungskonzepten
Laufzeit: 01.07.2013 bis 30.06.2015

Die Entwicklungstendenzen bezüglich des Leichtbaus im Automobilbau haben neben der Verwendung von Leichtmetallen auch den Einsatz höchstfester Stahlgüten begünstigt. Eine innovative Technologie stellt dabei das Press- bzw. Formhärten dar, welches eine Verfahrenskombination aus Warmumformung und Härtung durch Martensitbildung darstellt. Dabei kommen verschiedene Beschichtungskonzepte zum Schutz der Werkstückoberfläche während des Presshärtens zum Einsatz. Ziel des Forschungsvorhabens ist, die sich aus diesen pressgehärteten Bauteilen und seinen unterschiedlichen Beschichtungskonzepten ergebenden Besonderheiten bezüglich der Schweißeignung durch MSG-Prozesse zu untersuchen. Bei den untersuchten Prozessparametern werden neben den Beschichtungskonzepten auch unterschiedliche modifizierte Kurzlichtbogenprozesse und Schutzgaszusammensetzungen mit einbezogen. Des Weiteren werden Untersuchungen zur Wärmeeinbringung sowie der Abkühlgeschwindigkeit und deren Auswirkungen untersucht. Beurteilt werden dabei neben der Prozessstabilität die sich einstellenden mechanisch technologischen Eigenschaften auch bezüglich ihrer Richtungsabhängigkeit. Die wirtschaftliche Bedeutung bzw. der Nutzen für die KMUs liegt in der direkten Nutzung der Untersuchungsergebnisse. Da hier die vielfältigen Kombinationen der unterschiedlichen Einflussfaktoren und Prozessparameter in ihrer Komplexität, ihrer gegenseitigen Beeinflussung und den sich daraus ergeben Eigenschaften auch bezüglich ihres Einflussgrades ableiten lassen. Durch eine enge Zusammenarbeit mit den beteiligten Unternehmen des projektbegleitenden Ausschusses ist bereits während der Projektlaufzeit ein direkter Transfer der Forschungsergebnisse in die Praxis möglich. Bereits hier kann er genutzt werden um in Form von Verarbeitungs- oder Konstruktionsvorgaben sowie Schweißanweisungen die Prozesssicherheit, Qualität und Produktivität zu erhöhen. Nach Projektabschluss werden die Ergebnisse einer breiten Nutzung zugänglich gemacht.

Projekt im Forschungsportal ansehen

Analyse der Werkstoffbeeinflussung durch Widerstandsschweißen an höchstfesten Stählen
Laufzeit: 01.02.2013 bis 30.03.2015

Ziel ist die Untersuchung des fertigungsbedingten Einflusses auf Geometrie- und Werkstoffveränderung beim Widerstandspunktschweißen von hochfesten Stählen. Hierfür soll eine numerische Abbildung des Prozesses unter Berücksichtigung von fertigungsspezifischen Maßabweichungen der Bauteile und der Entstehung von Verformungen erfolgen, um so ein besseres Verständnis von thermischen und mechanischen Vorgängen während des Schweißvorgangs zu erlangen. Besondere Betrachtung liegt auf der Entstehung von Unregelmäßigkeiten wie Lunkern und Rissen, die die mechanischen Verbindungseigenschaften beeinflussen. Die dafür verantwortlichen kritischen Prozessabläufe sollen ermittelt und eine neue Untersuchungsmethode zur Bewertung von Heißrissanfälligkeit beim Widerstandsschweißen entwickelt werden. Im weiteren soll die Zeitstandfestigkeit von Schweißverbindungen mit Imperfektionen sowohl experimentell, als auch numerisch untersucht werden, um eine Aussage über die kritische Lage und Größe von Schweißfehlern machen zu können. Das Bild zeigt eine Schweißlinse sowie eine Simulation von Lastspannungen nach dem Schweißen, die durch Rücfederung der Bauteile hervorgerufen werden.

Projekt im Forschungsportal ansehen

Entwicklung einer Prozesskette zum Formhärten
Laufzeit: 01.12.2011 bis 30.12.2012

Zur Herstellung von höchstfesten Blechbauteilen aus dem Vergütungsstahl 22MnB5 wurde eine Prozessroute bestehend aus einem Ofen und einer Umformpresse bzw. Abkühlvorrichtung aufgebaut. Die Wärmebehandlung im Ofen kann dabei unter besonderer Atmosphäre erfolgen, um Oxidation der Oberfläche, Entkohlung der Randschicht und insbesondere den Wasserstoffeintrag ins Gefüge gezielt zu beeinfussen. Die Abkühlgeschwindigkeit und damit die Eigenschaften der Probebleche kann gezielt eingestellt werden.

Projekt im Forschungsportal ansehen

Steigerung der Korrosionsbeständigkeit von Schweißplattierungen durch Einsatz von MSG-Zweidrahtprozessen mit nicht artgleichen Drahtelektroden
Laufzeit: 01.09.2020 bis 31.08.2023

Das Forschungsprojekt verfolgt das Ziel, bislang genutzte Ni-Basis-Legierungssysteme zum Schweißplattieren von Komponenten in Müllverbrennungsanlagen, Biomasseanlagen, Kohle- und Gaskesseln, Wirbelschichtkesseln und Chemieanlagen über die Nutzung der Button-Melt-Technik weiterzuentwickeln und über den Einsatz von MSG-Zweidrahtprozessen praktisch umzusetzen. um die Hochtemperaturkorrosionsbeständigkeit von Schweißplattierungen bei gleichzeitigem Erfüllen der Anforderungen an die innere und äußere Nahtqualität zu verbessern. Diese Vorgehensweise wird gewählt, da Legierungsentwicklungen im Bereich von Ni-Basiswerkstoffen sehr aufwendig und kostenintensiv sind und die Schweißzusätze zumeist aus derselben Schmelze wie die Grundwerkstoffe gefertigt werden. In der Regel werden etwa 10 Jahre benötigt, um eine Hochtemperaturlegierung zu entwickeln und zu qualifizieren. Das Projekt schafft somit Basiswissen für die Entwicklung neuer Produkte, Verfahren und Dienstleistungen. Zudem bildet die Nutzung von Heißdraht-unterstützten MSG-Prozessvarianten einen vielversprechenden Ansatz nicht nur Abschmelzleistung und Schweißgeschwindigkeit beim Plattieren oder additiven Schweißen mit Ni-Basis-Schweißzusatzwerkstoffen zu maximieren. Ferner können über den Zusatzdraht die Schweißguteigenschaften gezielt metallurgisch beeinflusst werden.

Projekt im Forschungsportal ansehen

Erweiterung des Konstitutionsschaubildes für hoch Mn-haltige Stähle in Mischschweiß-verbindung durch Gefährdungsbereiche
Laufzeit: 01.07.2019 bis 31.07.2023

Im Forschungsantrag geht es um vorwettbewerbliche, anwendungsorientierte Grundlagenuntersuchungen zur Verbesserung der schweißtechnischen Verarbeitung von hoch Mn-haltigen Stählen in Mischverbindung. In Deutschland stehen derzeit mehrere hoch Mn-haltige Legierungskonzepte als Stähle bzw. Schweißzusatzwerkstoffe entweder kommerziell zur Verfügung bzw. kurz vor der Markteinführung. Die Herausforderung für die thermische Fügetechnik liegt in der Integration der FeMn-Stähle in bereits bestehende Konstruktionen aus bewährten hochfesten ferritischen bzw. martensitischen Karosseriestählen. In Abhängigkeit von Fügepartner, Schweißprozess, Zusatzwerkstoff und Aufmischung kann es zu unerwünschten Erscheinungen, wie Martensitbildung, hohe Härte bzw. hohe Härtegradienten als auch schweißbedingter Rissbildung, im Mischschweißgut kommen. Um diese Gefährdungen im Voraus abschätzen und möglichst vermeiden zu können, besteht das Ziel des Vorhabens darin, das im FOSTA-Projekt P1108 entwickelte Konstitutionsschaubild für MSG-Mischschweißverbindungen hoch Mn-haltiger Stähle durch Bereiche zu erweitern, in denen mit für das Schweißgut kritischen Gefügen und Erscheinungen zu rechnen ist. Mit der Angabe dieser Gefährdungsbereiche soll den Anwendern ein hinreichendes Mittel zur Bewertung der Schweißeignung der betreffenden Legierungen und zur Herstellung eines möglichst gefährdungsarmen Schweißgutes bereitgestellt werden (ähnlich dem Schaeffler-Diagramm). Dies erleichtert u. a. die Auswahl und Entwicklung angepasster Zusatzwerkstoffe und Schweißtechnologien für die Verarbeitung der FeMn-Stähle in Mischschweißverbindung. Nutznießer der Ergebnisse sind kmU aus dem Bereich der Zuliefererindustrie der Fahrzeugbranche, die im Rahmen der Prototypenfertigung, aber auch im Serienprozess immer häufiger mit neu entwickelten hochfesten Stählen konfrontiert werden, sowie der Schweißzusatzwerkstoffentwicklung und -herstellung.

Projekt im Forschungsportal ansehen

Beeinflussung von Mikrostruktur und Eigenschaften beim additiven Lichtbogenschweißen von Nickelbasis-Superlegierungen
Laufzeit: 01.03.2019 bis 31.12.2021

Ziel des Forschungsvorhabens ist das Bestimmen werkstoffspezifischer Eigenschaften additiv gefertigter fertigkonturnaher Strukturen mit dem MSG-Schweißen (CMT) aus vier industriell weit verbreiteten Ni-Basis-Schweißzusätzen (S Ni 7718, S Ni 6617, S Ni 6625, S Haynes 282). Das Projekt schafft Basiswissen für die Entwicklung neuer Produkte, Verfahren und Dienstleistungen. Neben der Klärung der Auswirkungen verschiedener Prozessspezifika auf Nahtunregelmäßigkeiten, Gefüge, mechanische Eigenschaften bei Raum- und erhöhter Temperatur sowie korrosiver Kennwerte soll das Potential weiterentwickelter Legierungskonzepte von handelsüblichen Schweißzusätzen für das WAAM untersucht werden. Ebenso wird der Einfluss vorhandener PWHT-Prozeduren auf Nahteigenschaften und ein mögliches Strain-Age Cracking erforscht. Das Additive Manufacturing erfolgt derzeit bevorzugt mit pulverbettbasierten Strahlschweißverfahren bzw. dem Laser Metal Deposition (LMD) mit Pulver. Die Nutzung des drahtbasierten MSG-Schweißverfahrens bietet grundsätzlich die Möglichkeit, großvolumige Bauteile mit hohen Aufbauratensind zu fertigen.

Projekt im Forschungsportal ansehen

Beeinflussung von Mikrostruktur und Eigenschaften beim additiven Lichtbogenschweißen von Nickelbasis-Superlegierungen
Laufzeit: 31.12.2021 bis 31.12.2021

Ziel des Forschungsvorhabens ist das Bestimmen werkstoffspezifischer Eigenschaften additiv gefertigter fertigkonturnaher Strukturen mit dem MSG-Schweißen (CMT) aus vier industriell weit verbreiteten Ni-Basis-Schweißzusätzen (S Ni 7718, S Ni 6617, S Ni 6625, S Haynes 282). Das Projekt schafft Basiswissen für die Entwicklung neuer Produkte, Verfahren und Dienstleistungen. Neben der Klärung der Auswirkungen verschiedener Prozessspezifika auf Nahtunregelmäßigkeiten, Gefüge, mechanische Eigenschaften bei Raum- und erhöhter Temperatur sowie korrosiver Kennwerte soll das Potential weiterentwickelter Legierungskonzepte von handelsüblichen Schweißzusätzen für das WAAM untersucht werden. Ebenso wird der Einfluss vorhandener PWHT-Prozeduren auf Nahteigenschaften und ein mögliches Strain-Age Cracking erforscht. Das Additive Manufacturing erfolgt derzeit bevorzugt mit pulverbettbasierten Strahlschweißverfahren bzw. dem Laser Metal Deposition (LMD) mit Pulver. Die Nutzung des drahtbasierten MSG-Schweißverfahrens bietet grundsätzlich die Möglichkeit, großvolumige Bauteile mit hohen Aufbauratensind zu fertigen.

Projekt im Forschungsportal ansehen

Erzielung werkstoffspezifischer Eigenschaften beim generativen Schutzgasschweißen fertig-konturnaher Strukturen aus Duplexstahl
Laufzeit: 01.01.2019 bis 31.07.2021

Die Zielsetzung des Forschungsvorhabens besteht im Erreichen eines werkstoffspezifischen Eigenschaftsprofils beim generativen Schutzgasschweißen fertigkonturnaher Strukturen aus Standard- und Superduplexstahl. Zur Gewährleistung der im Normenwerk geforderten werkstoffspezifischen Kennwerte ist sowohl eine Technologieanpassung als auch eine Weiterentwicklung der Legierungskonzepte handelsüblicher Schweißzusätze erforderlich. Hierfür erfolgt die systematische Untersuchung der Einflüsse von Schweißdrahtanalyse und Prozessparametern auf die metallurgischen, mechanisch-technologischen und korrosiven Kennwerte des Schweißgutes, um somit die Anwendbarkeit dieser Technologie auch für Duplexstähle sicher zu stellen.
Ein Bedarf für additiv gefertigte Bauteile aus Duplexstahl existiert u. a. für Sonderanfertigungen im Apparate- und Anlagenbau aber auch für korrosionsbelastete Komponenten in Industrieanlagen. Gerade für Duplexstähle stellt die Möglichkeit des Aufschweißens von Stutzen an Behälter oder von Flanschen an Rohrleitungen einen Vorteil für KMU dar, da sie somit von Zulieferfirmen und folglich auch von deren Lieferfristen sowie -qualitäten unabhängig wären.

Projekt im Forschungsportal ansehen

Entwicklung einer wirtschaftlicheren Prozessführung für das UP-Schweißen ferritisch-austenitischer Legierungen unter Berücksichtigung der metallurgischen Besonderheiten
Laufzeit: 01.02.2018 bis 31.01.2021

Die Zielsetzung des Forschungsvorhabens besteht in der Ermittlung einer Prozessführung für ein wirtschaftlicheres UP-Schweißen von drei industriell relevanten Vertretern ferritisch-austenitischer Legierungen mit zusätzlicher Drahtzufuhr bei Gewährleistung der im Normenwerk geforderten werkstoffspezifischen Kennwerte. Die aktuell verfügbaren Lean- und Standardduplexstähle gelten bei Beachtung der Verarbeitungshinweise allgemein als gut schweißgeeignet. Mit zunehmenden Legierungsanteilen (Superduplexstahl) und einem hohen Wärmeeinbringen (UP-Schweißen) nimmt die Gefahr der Bildung von unerwünschten intermetallischen Phasen, 475°-Versprödung und Sekundäraustenit in den Schweißnähten signifikant zu. Dies führt zu Nicht-Erreichen von geforderten Kennwerte für mechanisch-technologische Eigenschaften und Korrosionsbeständigkeit. Zum Erzielen dem Regelwerk konformer Gütewerte, sollen daher die metallurgischen Potentiale einer zusätzlichen Drahtzufuhr beim UP-Schweißen von ferritisch-austenitischen Stählen untersucht und genutzt werden. Die angestrebte Generierung der gefoderten Kennwerte direkt aus dem UP-Schweißprozess mit zusätzlicher Drahtzufuhr heraus, kann darüber hinaus die Einsparung von zeit- und kostenaufwendigen Wärmenachbehandlungen bei der Herstellung dickwandiger Rohre ermöglichen, was ebenso enorme Zeit- und Kostenersparnisse bringt, da der Glühprozess der geschwindigkeitsbestimmende Schritt der Fertigungskette ist. Die wirtschaftliche Bedeutung der Projektergebnisse für KMU begründet sich vor allem auf Zeit- und Kostenersparnissen bei geringem notwendigen Invest. Die Erhöhung der Abschmelzleistung führt zu schnelleren Schweißgeschwindigkeiten und/oder zu einer Verringerung der Lagenanzahl. Daraus resultieren wiederum die Reduktion der Fertigungszeiten und somit der Maschinenbelegungszeiten.

Projekt im Forschungsportal ansehen

Beeinflussung von Nahteigenschaften und Prozessverhalten durch Einsatz basischer Schlackesysteme beim MSG-Fülldrahtschweißen von Ni-Basislegierungen
Laufzeit: 01.11.2016 bis 30.04.2019

Das Ziel des Forschungsvorhabens besteht in der Ermittlung des Anwendungspotentials basischer Ni-Basis-Fülldrahtelektroden zum wirtschaftlichen MAG-Auftrag- und Verbindungsschweißen von Ni-Basislegierungen.
Im Rahmen vergleichender Betrachtungen mit derzeit gängigen Schweißzusatzwerkstoffen in Form von rutilen bzw. rutil-basischen Fülldrahtelektroden und Massivdrahtelektroden sind Untersuchungen zum Einfluss einer basischen Schlackecharakteristik von Fülldrahtelektroden auf das Schweißverhalten und die Schweißnahtausbildung geplant. Dazu gehören die Bewertung der Verarbeitungseigenschaften, wie der sinnvoll nutzbare Parameterbereich, die erreichbare Abschmelzleistung, der Tropfenübergang und die Schlackeausbildung, sowie die Bestimmung der erreichbaren Schweißnahtgüte beim MAG-Lichtbogenschweißen. Darüber hinaus werden die Auswirkungen der basischen Elemente im Schweißzusatz auf die schweißmetallurgischen Vorgänge im Schweißbad erforscht. Ein Schwerpunkt liegt dabei auf der Untersuchung des Einflusses der basischen Schlackecharakteristik auf die Heißrissneigung von Ni-Basis-Schweißgütern. Das Ziel des beantragten Forschungsvorhabens besteht in der Ermittlung des Anwendungspotentials basischer Ni-Basis-Fülldrahtelektroden zum wirtschaftlichen MAG-Auftrag- und Verbindungsschweißen von Ni-Basislegierungen.

Projekt im Forschungsportal ansehen

Gefüge- und Eigenschaftsvorhersage für das Schweißen hochmanganhaltiger Stähle in Mischverbindung
Laufzeit: 01.03.2015 bis 28.02.2018

Das Ziel des Vorhabens besteht in der Gefüge- und Eigenschaftsvorhersage für das Schweißen von Mischverbindungen aus austenitischen hochmanganhaltigen und ferritischen bzw. martensitischen Stählen. Bestehende Konstitutionsschaubilder zur Gefügevorhersage, wie das Schaeffler- oder WRC 1992-Diagramm, lassen sich dafür nicht einsetzen, da der Einfluss des hohen Mn-Gehaltes der Fe-Mn-Stähle im Nickel-Äquivalent nicht ausreichend berücksichtigt ist. Deshalb sollen im Vorhaben zwei abkühlzeitabhängige Konstitutionsschaubilder entwickelt werden, die die Prozessspezifika des MSG- und Laserstrahlschweißens berücksichtigen. In Verbindung mit den statischen und dynamischen Prüfungen der Schweißverbindungen wird ein hinreichendes Mittel zur quantitativen Vorhersage des Gefüges, insb. des Martensitanteils, im Schweißgut geschaffen und zur Prognose der Auswirkungen dieser Gefügebestandteile auf die Verbindungseigenschaften geschaffen. Dies erleichtert u. a. die Entwicklung angepasster Zusatzwerkstoffe für die Verarbeitung hochmanganhaltiger Stähle in Mischverbindung. Nutznießer der Ergebnisse sind kmU aus dem Bereich der Zuliefererindustrie der Fahrzeugbranche, die im Rahmen der Prototypenfertigung, aber auch im Serienprozess immer häufiger mit neu entwickelten hochfesten Stählen konfrontiert werden, sowie der Schweißzusatzwerkstoffentwicklung und -herstellung.

Projekt im Forschungsportal ansehen

Untersuchung der Auswirkungen zulässiger heißrissbedingter Unregelmäßigkeiten unter dem Aspekt der Wechsellastfähigkeit / Betriebsfestigkeit von Kraftwerken mit dickwandigen Nickelbasiskomponenten (HALLO)
Laufzeit: 01.12.2016 bis 31.12.2017

Zur geforderten Flexibilitätssteigerung von thermischen 600°C Kraftwerken eignen sich besonders hochwarmfeste Ni- und Fe-Legierungen, wie alloy 617B, alloy C-263, alloy 800H. Schweißanwendungen dieser Werkstoffe in der praktischen Erprobung zeigen, dass dickwandige Bauteile eine verringerte Toleranz gegenüber auftretenden (Mikro)-Heißrissen aufweisen. Starke, sich überlagernde thermische und mechanische Betriebswechsellasten bergen die Gefahr eines Wachstums dieser Heißrisse zu Makrorissen und können dadurch die Lebensdauer von Anlagenkomponenten reduzieren. Auch ist der zerstörungsfreie Nachweis dieser Mikrodefekte in dickwandigen Schweißungen aktuell nicht zuverlässig möglich. Das Ziel des Vorhabens besteht daher in der Erforschung der Auswirkungen schweißbedingter Heißrisse unter dem Aspekt der thermisch-mechanischen Wechsellastfähigkeit / Betriebsfestigkeit von Kraftwerken mit dickwandigen Komponenten aus o.g. Legierungen auf die Lebensdauer und in der Ermittlung ihrer Nachweisgrenzen bei Anwendung zerstörungsfreier Prüfmethoden.

Projekt im Forschungsportal ansehen

Ermittlung geeigneter Wärmeführungen zur Vermeidung wasserstoffunterstützter Kaltrisse beim Schweißenhöherfester Feinkornbaustähle mit modifiziertem Sprühlichtbogen
Laufzeit: 01.01.2015 bis 30.06.2017

Das Ziel des Forschungsprojektes besteht in der Reduzierung des Wasserstoffeintrages und der Kaltrissvermeidung in höherfesten Schweißverbindungen durch geeignete Wärmeführungen (vor, während und nach dem Schweißen) beim MAG-Schweißen mit modifizierten Sprühlichtbogen. Hierzu wird der prozessspezifische aufgenommene Wasserstoff in Ein- bzw. Mehrlagenschweißungen quantifiziert.
Die Forschungsstelle OvGU Magdeburg strebt an, Ergebnisse zum Einfluss der Lichtbogenlänge, des Kontaktrohrabstandes und des Schweißstromes auf den Wasserstoffeintrag beim Einlagenschweißen zu erarbeiten. In diesem Zusammenhang ergibt sich gleichzeitig ein dringender normativer Handlungsbedarf. So soll deshalb zur Ermittlung des diffusiblen Wasserstoffs in den Schweißungen eine prozessspezifische Adaption der für das Schweißen mit mod. SLB notwendigen standardisierten Prüfprozeduren gemäß DIN EN ISO 3690 erzielt werden. Diese Forschungsstelle wird schließlich das Kaltrissverhalten anhand von Einlagenschweißungen mit dem fremdbeanspruchten Implant-Test  nach  DIN EN ISO  17642-3  ermitteln. Der  Fokus  liegt  hierbei  auf  der  quantitativen Bestimmung der risskritischen Wasserstoffkonzentration unter Berücksichtigung der zuvor ermittelten prozessspezifischen Einflussgrößen des mod. SLB beim Einlagenschweißen höherfester Feinkornbaustähle. Ergebnis ist hier der funktionale Zusammenhang zwischen Implantspannung und Wasserstoffkonzentration.

Projekt im Forschungsportal ansehen

Erhöhung der Beständigkeit gegenüber Porenbildung beim MSG- und UP-Schweißen von Superduplexstahl
Laufzeit: 01.10.2014 bis 31.01.2017

Das Forschungsziel besteht in der Klärung metallurgischer und technologischer Zusammenhänge zur Erhöhung der Sicherheit gegenüber metallurgischer Porenbildung im Schweißgut von dickwandigen Bauteilen aus Superduplexstahl (SDSS) beim Metallschutzgas- und Unter Pulver-Schweißen bei gleichzeitiger Absicherung der geforderten mechanisch-technologischen Gütewerte und Korrosionsbeständigkeit. SDSS-Komponenten, wie z.B. Pumpen, Ventile, Rohre, finden aufgrund ihrer sehr hohen Korrosionsbeständigkeit sowie ihrer hohen Festigkeit in verschiedenen Wirtschaftszweigen, wie der On- und Offshore-Industrie und dem Chemischen Anlagenbau erfolgreich Anwendung. Beim Schweißen dieser Stähle offenbarte sich aktuell jedoch das Problem einer unzulässig starken Porenbildung. Die Forschungsergebnisse sollen in die Produktion von Schweißzusätzen und Schweißhilfsstoffen (Schutzgase, Pulver) und in vorhandene Schweißanweisungen sowie Verarbeitungs- und Konstruktionsvorgaben einfließen.

Projekt im Forschungsportal ansehen

Verbesserung der Schweißeignung von Ni-Basis-Schleuder- und Sandformguss
Laufzeit: 01.02.2012 bis 31.07.2014

Das Ziel des Forschungsvorhabens besteht darin, Wege aufzuzeigen, die Schweißeignung von wirtschaftlich relevanten Ni-Basis-Sandform- und Schleudergusslegierungen (alloy 59, alloy 625, alloy 617) zu verbessern. Im Rahmen dessen wird zum einen untersucht, inwieweit sich das Gefüge der Gusslegierungen durch Veränderungen im Gießprozess bzw. durch geeignete Wärmenachbehandlungen positiv beeinflussen lässt, um so den Reinheitsgrad zu erhöhen und die Korngröße sowie Seigerungen bzw. evtl. vorhandene intermetallische Phasen der Gusslegierungen zu reduzieren. Die Heißrissbeständigkeit der verschiedenen Ausgangszustände wird dabei mittels PVR-Test und Gleeble® 3500-Untersuchungen bestimmt. Zum anderen werden die Einsatzpotentiale von Standardtechnologien, die zum Schweißen von Ni-Basis-Blechwerkstoffen Einsatz finden (WIG, MAG-ILB), zum Gewährleisten heißrissfreier Verbindungsschweißungen ermittelt. Unter der Maßgabe, dass die Standardtechnologien zu keinen qualitätsgerechten Schweißnähten führen, werden neue Technologien für das Schweißen der Ni-Basis-Gusslegierungen erarbeitet, die der erhöhten Heißrissgefahr der Schweißverbindungen Rechnung tragen. Dazu gehören der Einsatz der modifizierten Kurzlichtbogentechnik beim MSG-Schweißen und das EB-Schweißen, ggf. mit Drahtzugabe. Gesamtziel ist es, eine Erhöhung der Qualität, Produktivität und der Prozesssicherheit bei der Fertigung von geschweißten Bauteilen aus Ni-Basis-Gusswerkstoffen zu erreichen.

Projekt im Forschungsportal ansehen

Untersuchung des Wasserstoffgefährdungspotentials warmumgeformter Bauteile aus hochfestem Stahl
Laufzeit: 01.07.2011 bis 30.06.2013

Das Ziel des Forschungsvorhabens besteht in der Entwicklung einer praxistauglichen fremdbeanspruchten Kaltrissprüfmethodik zur objektiven Bewertung des Risikos einer wasserstoffunterstützten verzögerten Kaltrissbildung beim Schweißen warmumgeformter höchstfester borlegierter Vergütungsstähle im Dünnblechbereich. Im Vordergrund stehen dabei die Qualifizierung der Prüfmethodik für Widerstandspunkt-, MAG- und Laserstrahl-Schweißungen sowie die Prüfung ihrer Übertragbarkeit auf weitere höchstfeste Stahlwerkstoffe. Die Erkenntnisse aus dem Forschungsvorhaben, die in Form einer Risikomatrix aufbereitet werden, sollen die Abschätzung einer potentiellen Gefährdung durch Wasserstoff beim Schweißen an den verschiedenen Fertigungs- und Beschichtungsvarianten des pressgehärteten borlegierten Stahles 22MnB5 ermöglichen.

Projekt im Forschungsportal ansehen

Metallkundlich-technologische Untersuchungen zum Elektronenstrahlschweißen mit kombinierter Mehrprozesstechnik von austenitisch-ferritischen Stählen ohne Schweißzusatz
Laufzeit: 01.12.2009 bis 31.05.2012

Das Ziel des Projektes besteht in der qualitätssicheren Herstellung von Elektronenstrahl (EB)-Schweißnähten an dickwandigen Bauteilen aus Lean- und Standard-Duplexstahl  in Walz- und Gussqualität ohne Schweißzusatz und Lösungsglühen durch die Entwicklung einer an die metallurgischen Besonderheiten dieser Werkstoffgruppe angepassten innovativen EB-Mehrprozesstechnologie. Wesentliche Qualitätskriterien bilden hierbei das Erreichen ausgewogener Austenit-Ferrit-Verhältnisse und das Gewährleisten der geforderten mechanisch-technologischen Gütekennwerte sowie der notwendigen Korrosionsbeständigkeiten.

Projekt im Forschungsportal ansehen

Schweißmetallurgische Untersuchungen zum wärmereduzierten MAG-Verbindungsschweißen heißrissempfindlicher Ni-Basislegierungen
Laufzeit: 01.03.2010 bis 28.02.2012

Das Ziel des Forschungsprojektes besteht in der Erhöhung der Heißrisssicherheit beim wirtschaftlichen MAG-Verbindungsschweißen von hoch Ni-haltigen Legierungen (alloy 625, alloy 617, alloy 600H, alloy 800H sowie alloy 59) im Dünn- und Dickblechbereich durch die Nutzung der innovativen wärmereduzierten MAG-Verfahrenstechnik mit modifiziertem Kurzlichtbogen. Gleichzeitig sind jedoch auch die in den Regelwerken festgelegten Qualitätsanforderungen im Hinblick auf weitere innere und äußere Nahtunregelmäßigkeiten, wie z.B. Bindefehler, Poren, Kerben und unzulässige Nahtgeometrien sowie im Hinblick auf die geforderten mechanisch-technologischen Güte­werte und Korrosionsbeständigkeiten zu gewährleisten. Zur Abschätzung der Heißrissneigung wird der Programmierte-Verformungsriss-Test genutzt.

Projekt im Forschungsportal ansehen

Entwicklung von Verschleißschutzschichten auf Basis von Nickelhartlegierungen auf Aluminiumbauteilen mittels Plasma-Pulver-Auftragschweißen
Laufzeit: 01.10.2008 bis 31.12.2010

Ziel des beantragten Forschungsvorhabens ist die Steigerung der Härte und der Verschleißbeständigkeit von Aluminiumoberflächen u. a. auch bei Einsatzbedingungen mit erhöhter Temperaturbeanspruchung. Dazu soll eine Verschleißschutzschicht auf Nickelbasis mit oder ohne Hartstoffverstärkung verwendet werden. Da ein direktes Aufbringen der Nickelschicht auf das Aluminium wegen der Ausbildung verschiedener intermetallischer Phasen aus metallurgischer Sicht nicht sinnvoll erscheint, ist die Verwendung einer kupferbasierten Haftschicht geplant. Diese soll sowohl metallurgisch als auch im Hinblick auf die unterschiedlichen Schichteigenschaften (z. B. Härte, Wärmedehnung etc.) als Pufferschicht zwischen Hartschicht und Grundwerkstoff fungieren. Zur Herstellung eines entsprechenden Verbundschichtsystems Grundwerkstoff-Haftschicht-Hartschicht mithilfe des Plasma-Pulver-Auftragschweißens sollen im Rahmen dieses Forschungsvorhabens Beschichtungsmöglichkeiten untersucht sowie Verfahrensgrenzen aufgezeigt und ggf. erweitert werden. Dazu werden geeignete Zusammensetzungen der Haft- und Hartschichten entwickelt sowie die Prozessparameter für die schweißtechnische Verarbeitung entsprechend optimiert. Die Untersuchungen werden für verschiedene, technisch bedeutende Aluminiumguss- und -knetlegierungen durchgeführt. Mithilfe dieses Forschungsvorhabens sollen die Einsatzmöglichkeiten von Aluminiumlegierungen ausgeweitet werden, sodass in verschiedensten Bereichen eine Substitution von Stahlbauteilen durch Aluminiumbauteile ermöglicht wird. Durch die angestrebten umfassenden Nutzungsmöglichkeiten der zu entwickelnden Technologie kann somit eine Vielzahl insbesondere klein- und mittelständischer Unternehmen von dem geplanten Forschungsvorhaben profitieren.

Projekt im Forschungsportal ansehen

Metallkundlich-technologische Untersuchungen zur Schweißeignung neuartiger austenitischer Fe-Mn-Stähle
Laufzeit: 01.04.2007 bis 30.06.2009

Das wesentliche Ziel des Forschungsprojektes ist die grundsätzliche Klärung der Schweißeignung von speziell für den Automobilbau entwickelten hochfesten vollaustenitischen Fe-Mn-Stählen. Im Vordergrund stehen dabei die verschiedenen Verfahrensvarianten des MAG-Schweißens und das Laserstrahlschweißen unter Berücksichtigung der für den Automobilbau charakteristischen Fertigungs- und Betriebsbedingungen. Bislang fehlende, jedoch im Rahmen dieses Projektes zu erarbeitende Erkenntnisse zu den werkstoffspezifischen und schweißmetallurgischen Vorgängen in Abhängigkeit der für das Schmelzschweißen charakteristischen thermischen Zyklen liefern die dafür notwendige Basis.

Projekt im Forschungsportal ansehen

Untersuchungen zur Erhöhung der Qualität beim Widerstandspunktschweißen von hoch- und höchstfesten ferritischen sowie hochlegierten austenitischen Stählen
Laufzeit: 01.02.2007 bis 31.01.2009

Das Ziel des Forschungsvorhabens besteht in der Erhöhung der Qualität und Reprodu­zierbarkeit von Widerstandspunktschweißverbindungen aus austenitischen und verzinkten ferritischen Stahlfeinblechen mit höheren Festigkeiten und max. 1,5 mm Dicke durch die Klärung des Einflusses der Legierungskonzeptes der zu schweißenden Werkstoffe und der verfahrenstechnischen Größen auf die Gefügeausbildung in den Mischverbindungen. Im Weiteren werden Empfehlungen zu optimalen Beschichtungszuständen abgeleitet, die auf der Basis von Forschungsergebnissen zum Einfluss der Dicke bzw. Art der Verzinkung auf die Qualität der Mischverbindungen zu erarbeiten sind.

Projekt im Forschungsportal ansehen

Schweißmetallurgische Untersuchungen zum Einsatz nicht rostender austenitischer Edelstähle für Anwendungen im Automobilbau
Laufzeit: 01.09.2006 bis 31.08.2008

Das Forschungsziel besteht darin, gesicherte Erkenntnisse zu den werkstoffspezifischen und schweißmetallurgischen Vorgängen in Schweißverbindungen des austenitischen hochlegierten Tiefziehstahles Nirosta H400 in Abhängigkeit der für das Lichtbogen- und Laserstrahlschweißen charakteristischen thermischen Zyklen zu erarbeiten. Diese sind sowohl für den Anlieferungs- als auch für den kaltverformten Zustand mit definierten Verfestigungen von wissenschaftlicher und wirtschaftlicher Bedeutung. Weiterhin soll unter Berücksichtigung der für den Automobilbau charakteristischen Fertigungs- und Betriebsbedingungen eine praxisnahe Technologieweiterentwicklung für das MAG-Schweißen erfolgen, da es sich bei diesem Schweißprozess um ein Verfahren handelt, welches sich beim Schweißen von nichtrostenden Stählen in kmU und im Automobilbau etabliert hat.

Projekt im Forschungsportal ansehen

Analyse der komplexen Zusammenhänge zwischen Aufmischung und Eigenschaften von überlegiert gefertigten Schweißnähten an Superduplexstählen (SDS)
Laufzeit: 01.08.2002 bis 31.07.2005

Das Ziel des Kooperations-Forschungsvorhabens war die Klärung grundlegender Zusammenhänge zwischen dem Aufmischungsgrad und der Heißrisssicherheit sowie den mechanischen und korrosiven Eigenschaften von Schweißnähten an einem Superduplexstahl der Werstoff-Nr. 1.4501. Eingesetzte Schweißwerkstoffe bei den Untersuchungen waren:

  • SG-X2CrNiMoCuW25-9 (Thermanit 25/09 CuT)
  • SG-X2CrNiMnMoN25-22-5-5 (Thermanit 26/22/5)
  • SG-NiCr22Mo10W3 (Phyweld NCW)
  • SG-NiCr20Fe14Mo11WN (Nicrofer S 5020)
  • SG-NiCr23Mo16 (Nicrofer S 5923)

Projekt im Forschungsportal ansehen

Prozesssicheres MSG-Schweißen von hochlegierten Sonderwerkstoffen mit niederfrequent gepulstem Drahtvorschub
Laufzeit: 01.08.2003 bis 31.07.2005

Untersucht wurden die Systemanforderungen für die Nutzung eines niederfrequenten Drahtpulses zum prozesssicheren Verarbeiten von Drahtelektroden aus hochlegierten Cr-Ni-Stählen und Nickelbasis-Werkstoffen. Diese Werkstoffe reagieren empfindlich auf Abriebverschmutzungen im Stromkontaktrohr. Die Folge sind Prozessstörungen in Form von starken Lichtbogenbewegungen, Schweißparameterschwankungen und Spritzerbildungen insbesondere bei großen Einschaltdauern und erhöhten Abschmelzleistungen. Im Hinblick darauf istfür verschiedene Schweißzusätze geklärt worden, bei welchen Drahtpuls-Frequenzen und welchen Vorschubänderungen optimale störungsfreie Drahtdurchläufe und beste Schweißnahtqualitäten erreichbar sind.

Projekt im Forschungsportal ansehen

Aufdeckung und Nutzung der Wirkungen von Stickstoffbeimengungen im Schutzgas und im Schweißzusatz beim Schweißen heißrissempfindlicher Ni-Basislegierungen
Laufzeit: 01.07.2000 bis 31.08.2002

Das Ziel des Forschungsprojektes besteht sowohl in der Klärung der Ursachen als auch in der Untersuchung der Möglichkeiten zur Vermeidung von Heißrissen im WIG- und MSG-Schweißgut von ausgewählten relevanten hochwarmfesten Ni-Basislegierungen über das Element Stickstoff. Hierfür wird das Element Stickstoff als Schutzgaskomponente zum inerten Basisgas Argon und als Legierungselement im Schweißzusatz der Lichtbogenatmosphäre und dem Schweißbad zugeführt. Damit ist gewährleistet, dass die Stickstoffzufuhr an den relevanten Schnittstellen Lichtbogenatmosphäre sowie zusatzwerkstoff- und grundwerkstoffseitiges Schmelzbad erfolgt. Die Untersuchungen erfolgen unter Verwendung geeigneter praxisrelevanter vollaustenitischer Schweißzusätze.

Projekt im Forschungsportal ansehen

Erhöhung der Prozessstabilität beim MSG-Schweißen von hochlegierten Werkstoffen über die Drahtelektrode
Laufzeit: 01.05.2000 bis 30.04.2002

Beim Metall-Schutzgasschweißen (MSG-Schweißen) mit hochlegierten Drahtelektroden wird der Prozess manchmal instabil. Die Ursachen hierfür sind nicht eindeutig bekannt. Sie werden vor allem in örtlichen Besonderheiten der inneren und äußeren Beschaffenheit der jeweiligen Drahtelektrode vermutet. Welche Merkmale dabei ausschlaggebend sind und durch welche konkreten Vorgänge die Prozessinstabilitäten ausgelöst werden, weiß man bisher nicht.
Aus diesem Grunde wird untersucht, durch welche spezifischen Merkmale verschiedene Varianten von hochlegierten Schweißzusätzen auf Eisen- und Nickelbasis gekennzeichnet sind und wie sie sich im Schweißprozess verhalten. Als Versuchsmaterialien stehen 24 Drahtelektrodensorten zur Verfügung, davon 17 Sonderanfertigungen für das Forschungs-projekt. Mit den neuen Sorten sollen spezielle Behandlungszustände näher untersucht werden, die möglicherweise zu Qualitätsverbesserungen bei den handelsüblichen Erzeugnissen führen könnten.
Die Forschungsarbeit soll vertiefende Erkenntnisse über mögliche auslösende Faktoren der Prozessinstabilitäten erbringen. Außerdem werden wissenschaftlich begründete Ansätze für eine verbesserte Drahtherstellung angestrebt.

Projekt im Forschungsportal ansehen

Untersuchungen von geschweißten hochkorrosionsbeständigen und hochwarmfesten Eisen- und Nickelbasislegierungen unter Metal Dusting-Bedingungen.
Laufzeit: 01.10.1999 bis 30.10.2001

Das Forschungsvorhaben verfolgt das Ziel, durch die Prüfung geschweißter Verbindungen von hochwarmfesten hochkorrosionsbeständigen Fe- und Ni-Basislegierungen unter Metal Dusting-Bedingungen dieser katastrophalen Korrosionserscheinung als Problem künftig besser zu begegnen und auf diese Weise die Qualität der schweißtechnischen Verarbeitung sowie die Lebensdauer geschweißter Erzeugnisse zu erhöhen. Die den Betreibern und Herstellern von Anlagen bzw. Apparaten der chemischen und petrochemischen Industrie mit Aufkohlungsatmosphären ac >> 1 zur Verfügung stehenden Ergebnisse sollen einerseits die Anwendung optimierter Schweißtechnologien für die Herstellung qualitativ hochwertiger schutzgasgeschweißter Verbindungen der gewählten Versuchswerkstoffe gewährleisten und andererseits Angaben bzw. Kennwerte zum Langzeitverhalten der geschweißten Nähte in Verbindung mit verschiedenen Nachbehandlungsmöglichkeiten im Hinblick auf Metal Dusting sowie auf Zeitstand-Warmfestigkeitseigenschaften liefern.

Projekt im Forschungsportal ansehen

Untersuchungen zum qualitätssicheren Lichtbogenschweißen von hochsiliziumhaltigen hochlegierten Werkstoffen
Laufzeit: 01.03.1996 bis 28.02.1998

Das Forschungsvorhaben untersuchte die schweißtechnische Verarbeitbarkeit neuer korrosionsbeständiger hochlegierter Materialien, die den Legierungssystemen Fe-Ni-Cr-Si und Ni-Cr-Fe-Si angehören und infolge ihres hohen Si-Gehaltes (bis 8% Si) beim Schweißen hohe Anforderungen stellen. Als relevante Typenvertreter wurden der austenitische Sonderedelstahl X1 NiCrSi 24 9 7 (Werkstoff-Nr. 1.4390) und die Ni-Basislegierung NiCr28FeSiCe (Werkstoff-Nr. 2.4889) unter Gebrauch verschiedener Schweißprozesse verarbeitet. Im Ergebnis der Untersuchungen musste die Schweißeignung beider Materialien insgesamt als bedingt eingestuft werden. Im Rahmen des Vorhabens gelang es jedoch, für jeden Werkstoff spezifische Schweißbedingungen zu erarbeiten, die eine qualitätssichere Verarbeitung gewährleisten.

Projekt im Forschungsportal ansehen

Schweißen von Superlegierungen für die Umwelt-, Energie- und Chemietechnik
Laufzeit: 01.04.1995 bis 31.12.1997

Im Rahmen dieses über die Auftragsforschung-West-Ost geförderten Forschungsprojektes wurden eine Reihe von Schweißeignungsuntersuchungen zu verschiedenen innerhalb des letzten Jahrzehntes entwickelten Sonderedelstählen und Ni-Basislegierungen durchgeführt. Es wurden schweißtechnische und werkstoffkundliche Untersuchungen u.a. an den folgenden Werkstoffen realisiert:

  • Nicrofer 2509 Si 7 - alloy 700 Si (Werkstoff-Nr. 1.4390
  • Nicrofer 45 TM - alloy 45 TM (Werkstoff-Nr. 2.4889)
  • Nimofer 6629 - alloy B-4 (W.-Nr. 2.4600)
  • Nicrofer 6025 HT - alloy 602 CA (W.-Nr. 2.4633)
  • Nicrofer 6125 GT - alloy 603 GT (Werkstoff-Nr. 2.4692
mit den Verfahren WIG, MIG/MAG, UP und Laser. Die Ergebnisse dieser Arbeiten sind in verschiedenen Berichten zusammengefasst.

Projekt im Forschungsportal ansehen

On-line-Fehlerüberwachung beim MAGM-Dünnblechschweißen durch Fuzzy-Control
Laufzeit: 01.05.1994 bis 30.06.1995

Ein wesentliche Schwachstelle für das Automatisieren des Schweißens ist, dass Überwachungsgrößen für eine Qualitätssicherung während des ablaufenden Schweißprozesses nicht oder nur eingeschränkt verfügbar sind. Ziel des Forschungsvorhabens war es daher, am Beispiel des MAG-Dünnblechschweißens solche Überwachungsgrößen im Ergebnis einer tiefgründigen Analyse der Schweißprozesssignale zu definieren sowie auf ihre Eignung für die automatische Qualitätsbeurteilung zu untersuchen. Das Forschungsergebnis ist durch Überwachungsgrößen gekennzeichnet, die Veränderungen der Nahtqualität über die analysierten Zusammenhänge zwischen Signalverhalten und Schweißnahtqualität sofort und in guter Qualität anzeigen. Die Forschungsergebnisse sind für die Realisierung einer schweißprozessbegleitenden automatischen Qualitätssicherung von grundlegender Bedeutung. Direkte Anwendungsmöglichkeiten bestehen bei der MAG-Dünnblechschweißung. Die Analysenmethodik ist auf weitere Schweißverfahren und Anwendungsfälle übertragbar.

Projekt im Forschungsportal ansehen

Erarbeitung von Schweißbedingungen für ein produktives und zuverlässiges MAG-Schweißen von hochlegierten Stählen
Laufzeit: 01.07.1991 bis 30.06.1993

In diesem Forschungsvorhaben wurden an drei verschiedenen hochlegierte Stählen mit den Werkstoff-Nr. 1.4003, 1.4571 und 1.4462 auf der Grundlage ermittelter Resultate der Ab- und Zubrandverhältnisse von reinen Schweißgutproben der verwendeten Schweißzusätze (Massiv- und Fülldrahtelektroden) Untersuchungen zu werkstoffangepaßten Schweißbedingungen unter Einsatz der MAG-Impulstechnik an 5 mm dicken Blechen durchgeführt. Auf der Basis dieser umfangreichen Untersuchungen sowie der Bewertung der Schweißnähte auf innere und äußere Nahtfehler, der Ermittlung der mechanisch-technologischen Gütewerte und der Auswertung der Gefügeuntersuchungen wurden technologische Empfehlungen zur schweißtechnischen Verarbeitung dieser Stähle getroffen.

Projekt im Forschungsportal ansehen

Automatisierte Pendeleinrichtung zum Schutzgasschweißen
Laufzeit: 01.09.1991 bis 31.03.1993

Gegenstand dieses Forschungsprojektes war es u.a. die Eignung einer neu entwickelten Pendeleinrichtung zum automatischen Schutzgasschweißen zu überprüfen und Zusammenhänge zwischen den stellbaren Pendelparametern aufzudecken. Besonders die Verdeutlichung der Zusammenhänge zwischen den unterschiedlichen Pendelparametern und deren Wichtung ermöglicht eine weitere Verbesserung der Steuerung hinsichtlich der Reduzierung der Stellmöglichkeiten. Die Auswertung der verschiedenen Schweißversuche ermöglichte die Ableitung von Verbesserungsmöglichkeiten sowohl am Steuerteil als auch am mechanischen Pendelsystem eines Prototyps der Hybridpendelvorrichtung der Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH.

Projekt im Forschungsportal ansehen

Verbesserung der Wirtschaftlichkeit beim Schweißen hochlegierter Werkstoffe
Laufzeit: 01.12.1991 bis 31.03.1993

An vier verschiedenen hochlegierten Hochleistungswerkstoffe wurden schweißtechnische Untersuchungen gemäß den Anforderungen der Praxis durchgeführt:

  • X2CrNiMnMoN24-17-6-4, Werkstoffe-Nr. 1.4565S
  • NiCr28FeSiCe, Werkstoffe-Nr. 2.4889
  • NiCr23Fe, Werkstoffe-Nr. 2.4851
  • NiCr25FeAlY, Werkstoffe-Nr. 2.4633
Untersucht wurden die zweckmäßigen Schweißbedingungen, insbesondere die Auswahl der Impulsparameter und der Schutzgasmischungen, um korrosionsbeständige und risssichere Schweißverbindungen zu erlangen sowie die erzielten Eigenschaften der Schweißnähte denen der Grundwerkstoffe anzunähern.

Projekt im Forschungsportal ansehen

Letzte Änderung: 04.04.2023 - Ansprechpartner: Sven Jüttner